Atnaujinkite slapukų nuostatas

El. knyga: Trustworthy Federated Learning: First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. 
The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.


Adaptive Expert Models for Personalization in Federated
Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid
Clients.- Practical and Secure Federated Recommendation with Personalized
Mask.- A General Theory for Client Sampling in Federated
Learning.- Decentralized adaptive clustering of deep nets is beneficial for
client collaboration.- Sketch to Skip and Select: Communication Efficient
Federated Learning using Locality Sensitive Hashing.- Fast Server Learning
Rate Tuning for Coded Federated Dropout.- FedAUXfdp: Differentially Private
One-Shot Federated Distillation.- Secure forward aggregation for vertical
federated neural network.- Two-phased Federated Learning with Clustering and
Personalization for Natural Gas Load Forecasting.- Privacy-Preserving
Federated Cross-Domain Social Recommendation.