Atnaujinkite slapukų nuostatas

El. knyga: Trustworthy Machine Learning for Healthcare: First International Workshop, TML4H 2023, Virtual Event, May 4, 2023, Proceedings

Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13932
  • Išleidimo metai: 30-Jul-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031395390
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Computer Science 13932
  • Išleidimo metai: 30-Jul-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031395390
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the proceedings of First International Workshop, TML4H 2023, held virtually, in May 2023.

The 16 full papers included in this volume were carefully reviewed and selected from 30 submissions. The goal of this workshop is to bring together experts from academia, clinic, and industry with an insightful vision of promoting trustworthy machine learning in healthcare in terms of scalability, accountability, and explainability.

Do Tissue Source Sites leave identifiable Signatures in Whole Slide Images beyond staining?.- Explaining Multiclass Classifiers with Categorical Values: A Case Study in Radiography.- Privacy-preserving machine learning for healthcare: open challenges and future perspectives.- Self-Supervised Predictive Coding with Multimodal Fusion for Patient Deterioration Prediction in Fine-grained Time Resolution. Safe Exploration in Dose Finding Clinical Trials with Heterogeneous Participants. Isabel Chien, Javier Gonzalez Hernandez, Richard E Turner.- CGXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear Programs.- ExBEHRT: Extended Transformer for Electronic Health Records.- Stasis: Reinforcement Learning Simulators for Human-Centric Real-World Environments. Cross-domain Microscopy Cell Counting by Disentangled Transfer Learning.- Post-hoc Saliency Methods Fail to Capture Latent Feature Importance in Time Series Data.- Enhancing Healthcare Model Trustworthiness through Theoretically Guaranteed One-Hidden-Layer CNN Purification.- A Kernel Density Estimation based Quality Metric for Quality Assessment of Obstetric Ultrasound Video.- Learn2Agree: Fitting with Multiple Annotators without Objective Ground Truth.- Conformal Prediction Masks: Visualizing Uncertainty in Medical Imaging.- Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition through the Lens of Robustness.- Geometry-Based end-to-end Segmentation of Coronary artery ib Computed Tomography Angiograph.