Atnaujinkite slapukų nuostatas

El. knyga: Twisted Morse Complexes: Morse Homology and Cohomology with Local Coefficients

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2361
  • Išleidimo metai: 01-Nov-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031716164
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2361
  • Išleidimo metai: 01-Nov-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031716164

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book gives a detailed presentation of twisted Morse homology and cohomology on closed finite-dimensional smooth manifolds. It contains a complete proof of the Twisted Morse Homology Theorem, which says that on a closed finite-dimensional smooth manifold the homology of the MorseSmaleWitten chain complex with coefficients in a bundle of abelian groups G is isomorphic to the singular homology of the manifold with coefficients in G. It also includes proofs of twisted Morse-theoretic versions of well-known theorems such as Eilenberg's Theorem, the Poincaré Lemma, and the de Rham Theorem. The effectiveness of twisted Morse complexes is demonstrated by computing the Lichnerowicz cohomology of surfaces, giving obstructions to spaces being associative H-spaces, and computing Novikov numbers.  Suitable for a graduate level course, the book may also be used as a reference for graduate students and working mathematicians or physicists.
-
1. Introduction.- 2. The Morse Complex with Local Coefficients.-
3. The Homology Determined by the Isomorphism Class of G.- 4. Singular and
CW-Homology with Local Coefficients.- 5. Twisted Morse Cohomology and
Lichnerowicz Cohomology.- 6. Applications and Computations.
Augustin Banyaga is a Professor of Mathematics and a Distinguished Senior Scholar at Penn State University in the Eberly College of Science and a Fellow of the African Academy of Sciences. He has authored at least 70 peer reviewed papers and 3 books, including Lectures on Morse Homology published by Springer.





David Hurtubise is a Professor of Mathematics at Penn State Altoona. He has authored at least 14 peer reviewed papers, 140 Mathematical Reviews, 45 Zentralblatt Reviews, and the book Lectures on Morse Homology published by Springer.





Peter Spaeth is a Senior Research Scientist at NASAs Langley Research Center. He has authored over 20 peer reviewed papers in mathematics, materials science, and nondestructive evaluation. In 2023 he was awarded the NASA Early Career Achievement Medal.