Atnaujinkite slapukų nuostatas

El. knyga: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis: 3rd International Workshop, UNSURE 2021, and 6th International Workshop, PIPPI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 12959
  • Išleidimo metai: 30-Sep-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030877354
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 12959
  • Išleidimo metai: 30-Sep-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030877354

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the Third International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2021, and the 6th International Workshop on Preterm, Perinatal and Paediatric Image Analysis, PIPPI 2021, held in conjunction with MICCAI 2021. The conference was planned to take place in Strasbourg, France, but was held virtually due to the COVID-19 pandemic.For UNSURE 2021, 13 papers from 18 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.





PIPPI 2021 accepted 14 papers from the 18 submissions received. The workshop aims to bring together methods and experience from researchers and authors working on these younger cohorts and provides a forum for the open discussion of advanced image analysis approaches focused on the analysis of growth and development in the fetal, infant and paediatric period.
UNSURE 2021 - Uncertainty estimation and modelling and annotation
uncertainty.- Model uncertainty estimation for medical Imaging based
diagnosis.- Accurate simulation of operating system updates in neuroimaging
using Monte-Carlo arithmetic.- Leveraging uncertainty estimates to improve
segmentation performance in cardiac MR.- Improving the reliability of
semantic segmentation of medical images by uncertainty modelling with
Bayesian deep networks and curriculum learning.- Unpaired MR image
homogeneisation by disentangled representations and its uncertainty.-
Uncertainty-aware deep learning based deformable registration.- Monte Carlo
Concrete DropPath for Epistemic Uncertainty Estimation in Brain Tumour
segmentation.- Improving Aleatoric Uncertainty quantification in
multi-annotated medical image segmentation with normalizing flows.- UNSURE
2021 Domain shift robustness and risk management in clinical pipelines.-
Task-agnostic out-of-distribution detection using kernel density estimation.-
Out of distribution detection for medical images.- Robust selective
classification of skin lesions with asymmetric costs.- Confidence-based
Out-of-Distribution detection: a comparative study and analysis.- Novel
disease detection using ensembles with regularized disagreement.- PIPPI2021.-
Automatic Placenta Abnormality Detection using Convolutional Neural Networks
on Ultrasound Texture.- Simulated Half-Fourier Acquisitions Single-shot Turbo
Spin Echo (HASTE) of the Fetal Brain: Application to Super-Resolution
Reconstruction.- Spatio-temporal atlas of normal fetal craniofacial feature
development and CNN-based ocular biometry for motion-corrected fetal MRI.-
Myelination of preterm brain networks at adolescence.- A bootstrap
self-training method for sequence transfer: State-of-the-art placenta
segmentation in fetal MRI.- Segmentation of the cortical plate in fetal brain
MRI with a topological loss.- Fetal brain MRI measurements using a deep
learning landmark network with reliability estimation.- CAS-Net: Conditional
Atlas Generation and Brain Segmentation for Fetal MRI.- Detection of Injury
and Automated Triage of Preterm Neonatal MRI using Patch-Based Gaussian
Processes.- Assessment of Regional Cortical Development through Fissure Based
Gestational Age Estimation in 3D Fetal Ultrasound.- Texture-based Analysis of
Fetal Organs in Fetal Growth Restriction.- Distributionally Robust
Segmentation of Abnormal Fetal Brain 3D MRI.- Analysis of the Anatomical
Variability of Fetal Brains with Corpus Callosum Agenesis.- Predicting
preterm birth using multimodal fetal imaging.