Atnaujinkite slapukų nuostatas

El. knyga: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging: 4th International Workshop, UNSURE 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13563
  • Išleidimo metai: 17-Sep-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031167492
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13563
  • Išleidimo metai: 17-Sep-2022
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031167492

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the Fourth Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2022, held in conjunction with MICCAI 2022. The conference was hybrid event held from Singapore. For this workshop, 13 papers from 22 submissions were accepted for publication. They focus on developing awareness and encouraging research in the field of uncertainty modelling to enable safe implementation of machine learning tools in the clinical world.

Uncertainty Modelling.- MOrphologically-aware Jaccard-based ITerative Optimization (MOJITO) for Consensus Segmentation.- Quantification of Predictive Uncertainty via Inference-Time Sampling.- Uncertainty categories in medical image segmentation: a study of source-related diversity..- On the pitfalls of entropy-based uncertainty for multi-class semi-supervised segmentation.- What Do Untargeted Adversarial Examples Reveal In Medical Image Segmentation?..- Uncertainty calibration.- Improved post-hoc probability calibration for out-of-domain MRI segmentation..- Improving error detection in deep learning-based radiotherapy autocontouring using Bayesian uncertainty.- A Plug-and-Play Method to Compute Uncertainty.- Calibration of Deep Medical Image Classifiers: An Empirical Comparison using Dermatology and Histopathology Datasets.- Annotation uncertainty and out of distribution management.- nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation Methods.- Generalized Probabilistic U-Net for medical image segmentation.- Joint paraspinal muscle segmentation and inter-rater labeling variability prediction with multi-task TransUNet.- Information Gain Sampling for Active Learning in Medical Image Classification.