Atnaujinkite slapukų nuostatas

El. knyga: Understanding Faults: Detecting, Dating, and Modeling

Edited by (Leibniz Institute for Applied Geophysics), Edited by (University of Hannover)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 08-Oct-2019
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128159866
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 08-Oct-2019
  • Leidėjas: Elsevier Science Publishing Co Inc
  • Kalba: eng
  • ISBN-13: 9780128159866
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Understanding Faults: Detecting, Dating, and Modeling offers a single resource for analyzing faults for a variety of applications, from hazard detection and earthquake processes, to geophysical exploration. The book presents the latest research, including fault dating using new mineral growth, fault reactivation, and fault modeling, and also helps bridge the gap between geologists and geophysicists working across fault-related disciplines. Using diagrams, formulae, and worldwide case studies to illustrate concepts, the book provides geoscientists and industry experts in oil and gas with a valuable reference for detecting, modeling, analyzing and dating faults.

  • Presents cutting-edge information relating to fault analysis, including mechanical, geometrical and numerical models, theory and methodologies
  • Includes calculations of fault sealing capabilities
  • Describes how faults are detected, what fault models predict, and techniques for dating fault movement
  • Utilizes worldwide case studies throughout the book to concretely illustrate key concepts
List of contributors
xi
Preface xiii
1 Introduction
1(10)
David C. Tanner
Christian Brandes
Definition of a fault surface, fault kinematics and displacement
5(4)
References
9(2)
2 Fault mechanics and earthquakes
11(70)
Christian Brandes
David C. Tanner
2.1 Introduction
12(1)
2.2 Fractures
13(3)
2.3 From intact rocks to opening-mode fractures to faults
16(9)
2.3.1 Griffith cracks
16(2)
2.3.2 The Coulomb failure criterion and the Mohr circle
18(4)
2.3.3 Hydrofractures
22(1)
2.3.4 Stress state and dynamic fault classification of Anderson
23(1)
2.3.5 Wallace-Bott hypothesis
24(1)
2.4 Fault zone processes and structure
25(21)
2.4.1 The fault zone
25(5)
2.4.2 Principal slip surface
30(1)
2.4.3 Pseudotachylites
31(1)
2.4.4 Strain hardening/strain softening of the fault core
32(1)
2.4.5 Fault surface geometry and roughness
33(2)
2.4.6 The process zone
35(1)
2.4.7 Deformation bands
36(5)
2.4.8 Fault groups and their characterization
41(3)
2.4.9 Fault evolution with depth
44(1)
2.4.10 Fault-related folding
44(2)
2.5 Fault movement and seismicity
46(16)
2.5.1 Fault rupture
47(9)
2.5.2 Fault creep
56(2)
2.5.3 Slow earthquakes
58(1)
2.5.4 The Cosserat theory as a concept to describe fault and deformation band behaviour
58(2)
2.5.5 Large overthrusts and the effect of fluid pressure
60(2)
2.6 Faults in soft-sediments
62(2)
References
64(17)
3 Fault detection
81(66)
David C. Tanner
Hermann Buness
Jan Igel
Thomas Gunther
Gerald Gabriel
Peter Skiba
Thomas Plenefisch
Nicolai Gestermann
Thomas R. Walter
3.1 Introduction
82(2)
3.2 Active seismics
84(7)
3.2.1 Seismic method
84(1)
3.2.2 Resolution
84(1)
3.2.3 Seismic imaging of faults
85(3)
3.2.4 Imaging of faults -- 2-D and 3-D
88(1)
3.2.5 Fracture detection
89(2)
3.3 Ground-penetrating radar (GPR)
91(6)
3.3.1 Principle
92(1)
3.3.2 Imaging of faults
93(2)
3.3.3 Examples
95(2)
3.4 Electrical resistivity tomography (ERT)
97(6)
3.4.1 Background
97(4)
3.4.2 Large-scale fault imaging with structural information
101(2)
3.5 Gravimetry and magnetics
103(8)
3.5.1 Gravity and magnetic anomalies -- definition and instruments for measurement
103(2)
3.5.2 Gravity and magnetic anomalies -- interpretation
105(6)
3.6 Seismology
111(16)
3.6.1 Detecting and illuminating faults by earthquake hypocentre distribution
112(5)
3.6.2 Describing faults by interpretation of source mechanisms
117(6)
3.6.3 Examples of detecting faults using hypocentre distributions and focal mechanisms
123(4)
3.7 Remote sensing
127(12)
3.7.1 History and background of remote sensing
127(3)
3.7.2 Instruments and data
130(2)
3.7.3 Fault mapping and kinematics
132(7)
3.7.4 Summary and outlook
139(1)
References
139(8)
4 Numerical modelling of faults
147(20)
Andreas Henk
4.1 Introduction
147(1)
4.2 Numerical methods for hydromechanical fault zone modelling
148(3)
4.3 Material parameters of fault zone rocks required for modelling
151(3)
4.4 An example of numerical modelling
154(8)
4.4.1 Modelling concept and parameters
154(2)
4.4.2 Model geometry and discretization
156(1)
4.4.3 Hydromechanical rock properties
156(1)
4.4.4 Boundary and initial conditions
157(1)
4.4.5 Modelling results
157(5)
4.5 Conclusions
162(1)
References
163(4)
5 Faulting in the laboratory
167(54)
Andre Niemeijer
Åke Fagereng
Matt Ikari
Stefan Nielsen
Ernst Willingshofer
5.1 Fault friction in the quasi-static regime
168(12)
5.1.1 Laboratory measurements of friction
168(3)
5.1.2 General observations of steady state friction
171(2)
5.1.3 Rate-and-state friction
173(3)
5.1.4 Observations of variations in velocity dependence of friction at room temperature
176(1)
5.1.5 Strength recovery (healing)
177(1)
5.1.6 Effect of hydrothermal conditions on velocity dependence of friction
178(2)
5.2 Fault friction in the dynamic regime
180(14)
5.2.1 Dynamic weakening mechanisms in gouges and solid rocks
180(1)
5.2.2 Melt lubrication
181(2)
5.2.3 Flash heating and flash weakening
183(2)
5.2.4 Thermal pressurization
185(1)
5.2.5 Thermal decomposition and pressurization
186(1)
5.2.6 Fluid phase changes
186(1)
5.2.7 Powder lubrication
187(1)
5.2.8 Activation of crystal-plastic (viscous) mechanisms
188(1)
5.2.9 Dynamic rupture in laboratory experiments
189(5)
5.2.10 Frontiers
194(1)
5.3 Faults in scaled physical analogue models
194(8)
5.3.1 Introduction
194(1)
5.3.2 Scaling tectonic faulting to the laboratory
195(1)
5.3.3 Rock analogue materials and their bulk properties
196(1)
5.3.4 Quantifying stress and strain in analogue models
197(1)
5.3.5 Fault formation in analogue models
197(4)
5.3.6 Faulting in single and multi-layer systems
201(1)
5.3.7 Frontiers
202(1)
5.4 Microstructures of laboratory faults
202(7)
5.4.1 Introduction of localization features
202(1)
5.4.2 Development of gouge microstructure with strain/displacement
203(2)
5.4.3 Distribution of slip on structural elements
205(1)
5.4.4 Role of Y or B shears in generation of unstable slip
206(1)
5.4.5 Clay-bearing versus non-clay bearing
207(1)
5.4.6 Frontiers
208(1)
References
209(12)
6 The growth of faults
221(36)
Andrew Nicol
John Walsh
Conrad Childs
Tom Manzocchi
6.1 Introduction
221(4)
6.2 Geometric indicators of fault growth
225(10)
6.2.1 Conceptual `ideal isolated fault' model
226(1)
6.2.2 Mechanical layering and displacement variations
226(3)
6.2.3 `Isolated' fault lateral displacement profiles
229(1)
6.2.4 Interaction and lateral displacement profiles
230(1)
6.2.5 Relay zones and lateral interactions
231(4)
6.2.6 Damage zones and lateral growth
235(1)
6.3 Direct kinematic indicators of fault growth
235(6)
6.3.1 Displacement through time
237(2)
6.3.2 Fault lateral propagation
239(1)
6.3.3 Fault upward propagation and reactivation
240(1)
6.4 Displacement-length relations and fault growth
241(2)
6.5 End-member fault growth models
243(3)
6.6 Earthquakes and incremental growth
246(1)
6.7 Concluding remarks
247(1)
References
248(9)
7 Direct dating of fault movement
257(26)
Sumiko Tsukamoto
Takahiro Tagami
Horst Zwingmann
7.1 Dating of authigenic clay minerals in brittle faults
257(9)
7.1.1 Outline of the concept and the analytical method
257(2)
7.1.2 K-Ar and 40Ar/39Ar clay dating principles
259(1)
7.1.3 Fault gouge dating constraints
259(2)
7.1.4 Authigenic clay gouge age interpretation
261(2)
7.1.5 Case studies
263(3)
7.2 Dating methods based on thermal reset
266(12)
7.2.1 Outline of the method
266(1)
7.2.2 Fission track dating
267(1)
7.2.3 (U-Th)/He dating
268(1)
7.2.4 Trapped charge dating
269(4)
7.2.5 Case studies
273(5)
References
278(5)
8 Fault sealing
283(68)
Michael Kettermann
Luca Smeraglia
Christopher K. Morley
Christoph von Hagke
David C. Tanner
8.1 Introduction
284(1)
8.2 How does a fault seal?
285(2)
8.3 General tools for fault seal analysis
287(4)
8.3.1 2D juxtaposition and Allan maps
288(1)
8.3.2 Juxtaposition diagrams
288(3)
8.4 Fault sealing in siliciclastic rocks
291(20)
8.4.1 Clay smear
292(1)
8.4.2 Deformation bands
293(1)
8.4.3 Fault seal predicting algorithms
294(4)
8.4.4 Fault permeability from fault seal algorithms
298(2)
8.4.5 Clay injection and mechanical clay injection potential (MCIP)
300(1)
8.4.6 Assessing fault reactivation and seal breach risk
301(2)
8.4.7 Analogue and numerical experiments of fault clay smear
303(8)
8.5 Fault sealing in carbonates
311(9)
8.5.1 Introduction
311(1)
8.5.2 Fault processes in low-porosity carbonates
311(5)
8.5.3 Faulting processes in high-porosity carbonates
316(1)
8.5.4 Carbonate faults cutting through heterogeneous stratigraphy
316(2)
8.5.5 Normal, thrust, and strike-slip fault architectures in carbonates
318(1)
8.5.6 Fault permeability, fluid circulation, and seal in carbonate hydrocarbon reservoirs
319(1)
8.6 Evaporites and fault seals
320(1)
8.7 Case studies of fault seal
321(18)
8.7.1 The Molasse Basin in Germany and the Rhenish Massif
321(5)
8.7.2 Inboard area of the Baram Delta Province, NW Borneo
326(10)
8.7.3 Clay smears in aquifers of the Lower Rhine Embayment
336(3)
References
339(12)
Conclusions 351(4)
Index 355
David Colin Tanner is a researcher at the LIAG Institute for Applied Geophysics, where his research focuses on structural modeling and seismic interpretation. He has given lectures on 3D geological modelling and tectonics at many universities. His interests lie in understanding the geological processes in the Earths crust, especially faults and their geological history.

Christian Brandes is a researcher and lecturer at the Institute of Geology at the University of Hannover. His research interests include interaction of tectonics and sedimentation, geodynamics of island-arcs, burial history and temperature evolution of sedimentary basins, paleoseismology, and evolution of fold-and-thrust belts. He lectures on tectonics, modeling, Earth history, mapping, and regional geology.