Atnaujinkite slapukų nuostatas

El. knyga: Unified Approach to Structural Limits and Limits of Graphs with Bounded Tree-Depth

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In this paper the authors introduce a general framework for the study of limits of relational structures and graphs in particular, which is based on a combination of model theory and (functional) analysis. The authors show how the various approaches to graph limits fit to this framework and that the authors naturally appear as ""tractable cases'' of a general theory. As an outcome of this, the authors provide extensions of known results. The authors believe that this puts these into a broader context. The second part of the paper is devoted to the study of sparse structures. First, the authors consider limits of structures with bounded diameter connected components and prove that in this case the convergence can be ""almost'' studied component-wise. They also propose the structure of limit objects for convergent sequences of sparse structures. Eventually, they consider the specific case of limits of colored rooted trees with bounded height and of graphs with bounded tree-depth, motivated by their role as ""elementary bricks'' these graphs play in decompositions of sparse graphs, and give an explicit construction of a limit object in this case. This limit object is a graph built on a standard probability space with the property that every first-order definable set of tuples is measurable. This is an example of the general concept of modeling the authors introduce here. Their example is also the first ``intermediate class'' with explicitly defined limit structures where the inverse problem has been solved.
Chapter 1 Introduction
1(8)
1.1 Main Definitions and Results
5(4)
Chapter 2 General Theory
9(30)
2.1 Limits as Measures on Stone Spaces
9(9)
2.2 Convergence, Old and New
18(7)
2.3 Combining Fragments
25(10)
2.4 Interpretation Schemes
35(4)
Chapter 3 Modelings for Sparse Structures
39(38)
3.1 Relational Samples Spaces
39(2)
3.2 Modelings
41(21)
3.3 Decomposing Sequences: the Comb Structure
62(15)
Chapter 4 Limits of Graphs with Bounded Tree-depth
77(24)
4.1 FO1-limits of Colored Rooted Trees with Bounded Height
77(16)
4.2 FO-limits of Colored Rooted Trees with Bounded Height
93(7)
4.3 Limits of Graphs with Bounded Tree-depth
100(1)
Chapter 5 Concluding Remarks
101(3)
5.1 Selected Problems
101(2)
5.2 Addendum
103(1)
Acknowledgements 104(1)
Bibliography 105
Jaroslav Nesetril, Charles University, Praha, Czech Republic

Patrice Ossona de Mendez, Centre d'Analyse et de Mathematiques Sociales, Paris, France