Atnaujinkite slapukų nuostatas

Uniform Central Limit Theorems [Kietas viršelis]

(Massachusetts Institute of Technology)
  • Formatas: Hardback, 452 pages, aukštis x plotis x storis: 237x161x30 mm, weight: 730 g, 2 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 28-Jul-1999
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521461022
  • ISBN-13: 9780521461023
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 452 pages, aukštis x plotis x storis: 237x161x30 mm, weight: 730 g, 2 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 28-Jul-1999
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521461022
  • ISBN-13: 9780521461023
Kitos knygos pagal šią temą:
This book shows how the central limit theorem for independent, identically distributed random variables with values in general, multidimensional spaces, holds uniformly over some large classes of functions. The author, an acknowledged expert, gives a thorough treatment of the subject, including several topics not found in any previous book, such as the Fernique-Talagrand majorizing measure theorem for Gaussian processes, an extended treatment of Vapnik-Chervonenkis combinatorics, the Ossiander L2 bracketing central limit theorem, the Giné-Zinn bootstrap central limit theorem in probability, the Bronstein theorem on approximation of convex sets, and the Shor theorem on rates of convergence over lower layers. Other results of Talagrand and others are surveyed without proofs in separate sections. Problems are included at the end of each chapter so the book can be used as an advanced text. The book will interest mathematicians working in probability, mathematical statisticians and computer scientists working in computer learning theory.

Recenzijos

'It is for certain that this will soon be a classic piece of work in the empirical process literature.' N. D. C. Veraberbeke, ISI Short Book Reviews 'The material of the book is very well organized, and incorporates recent developments an invaluable reference to researchers in this field it has been written in a style that makes it accessible to students; proofs have been carried out with meticulous care, and definitions are well motivated.' Erich Berger, Bulletin of the London Mathematical Society

Daugiau informacijos

This treatise by an acknowledged expert includes several topics not found in any previous book.
Preface xiii
1 Introduction: Donsker's Theorem, Metric Entropy, and Inequalities
1(22)
1.1 Empirical processes: the classical case
2(8)
1.2 Metric entropy and capacity
10(2)
1.3 Inequalities
12(6)
Problems
18(1)
Notes
19(2)
References
21(2)
2 Gaussian Measures and Processes; Sample Continuity
23(68)
2.1 Some definitions
23(1)
2.2 Gaussian vectors are probably not very large
24(7)
2.3 Inequalities and comparisons for Gaussian distributions
31(9)
2.4 Gaussian measures and convexity
40(3)
2.5 The isonormal process: sample boundedness and continuity
43(9)
2.6 A metric entropy sufficient condition for sample continuity
52(7)
2.7 Majorizing measures
59(15)
2.8 Sample continuity and compactness
74(4)
**2.9 Volumes, mixed volumes, and ellipsoids
78(4)
**2.10 Convex hulls of sequences
82(1)
Problems
83(3)
Notes
86(2)
References
88(3)
3 Foundations of Uniform Central Limit Theorems: Donsker Classes
91(43)
3.1 Definitions: convergence in law
91(4)
3.2 Measurable cover functions
95(5)
3.3 Almost uniform convergence amd convergence in outer probability
100(3)
3.4 Perfect functions
103(3)
3.5 Almost surely convergent realizations
106(5)
3.6 Conditions equivalent to convergence in law
111(6)
3.7 Asymptotic equicontinuity and Donsker classes
117(4)
3.8 Unions of Donsker classes
121(1)
3.9 Sequences of sets and functions
122(5)
Problems
127(3)
Notes
130(2)
References
132(2)
4 Vapnik-Cervonenkis Combinatorics
134(36)
4.1 Vapnik-Cervonenkis classes
134(4)
4.2 Generating Vapnik-Cervonenkis classes
138(4)
*4.3 Maximal classes
142(3)
*4.4 Classes of index 1
145(7)
*4.5 Combining VC classes
152(4)
4.6 Probability laws and independence
156(3)
4.7 Vapnik-Cervonenkis properties of classes of functions
159(2)
4.8 Classes of functions and dual density
161(4)
**4.9 Further facts about VC classes
165(1)
Problems
166(1)
Notes
167(1)
References
168(2)
5 Measurability
170(26)
*5.1 Sufficiency
171(8)
5.2 Admissibility
179(6)
5.3 Suslin properties, selection, and a counterexample
185(6)
Problems
191(2)
Notes
193(1)
References
194(2)
6 Limit Theorems for Vapnik-Cervonenkis and Related Classes
196(38)
6.1 Koltchinskii-Pollard entropy and Glivenko-Cantelli theorems
196(7)
6.2 Vapnik-Cervonenkis-Steele laws of large numbers
203(5)
6.3 Pollard's central limit theorem
208(7)
6.4 Necessary conditions for limit theorems
215(5)
**6.5 Inequalities for empirical processes
220(3)
**6.6 Glivenko-Cantelli properties and random entropy
223(3)
**6.7 Classification problems and learning theory
226(1)
Problems
227(1)
Notes
228(2)
References
230(4)
7 Metric Entropy, with Inclusion and Bracketing
234(16)
7.1 Definitions and the Blum-DeHardt law of large numbers
234(4)
7.2 Central limit theorems with bracketing
238(6)
7.3 The power set of a countable set: the Borisov-Durst theorem
244(2)
**7.4 Bracketing and majorizing measures
246(1)
Problems
247(1)
Notes
248(1)
References
248(2)
8 Approximation of Functions and Sets
250(35)
8.1 Introduction: the Hausdorff metric
250(2)
8.2 Spaces of differentiable functions and sets with differentiable boundaries
252(12)
8.3 Lower layers
264(5)
8.4 Metric entropy of classes of convex sets
269(12)
Problems
281(1)
Notes
282(1)
References
283(2)
9 Sums in General Banach Spaces and Invariance Principles
285(29)
9.1 Independent random elements and partial sums
286(5)
9.2 A CLT implies measurability in separable normed spaces
291(2)
9.3 A finite-dimensional invariance principle
293(8)
9.4 Invariance principles for empirical processes
301(5)
**9.5 Log log laws and speeds of convergence
306(3)
Problems
309(1)
Notes
310(1)
References
311(3)
10 Universal and Uniform Central Limit Theorems
314(18)
10.1 Universal Donsker classes
314(8)
10.2 Metric entropy of convex hulls in Hilbert space
322(6)
**10.3 Uniform Donsker classes
328(2)
Problems
330(1)
Notes
330(1)
References
330(2)
11 The Two-Sample Case, the Bootstrap, and Confidence Sets
332(31)
11.1 The two-sample case
332(3)
11.2 A bootstrap central limit theorem in probability
335(22)
11.3 Other aspects of the bootstrap
357(1)
**11.4 Further Gine-Zinn bootstrap central limit theorems
358(1)
Problems
359(1)
Notes
360(1)
References
361(2)
12 Classes of Sets or Functions Too Large for Central Limit Theorems
363(28)
12.1 Universal lower bounds
363(2)
12.2 An upper bound
365(2)
12.3 Poissonization and random sets
367(6)
12.4 Lower bounds in borderline cases
373(11)
12.5 Proof of Theorem 12.4.1
384(4)
Problems
388(1)
Notes
388(1)
References
389(2)
Appendix A Differentiating under an Integral Sign 391(8)
Appendix B Multinomial Distributions 399(3)
Appendix C Measures on Nonseparable Metric Spaces 402(3)
Appendix D An Extension of Lusin's Theorem 405(2)
Appendix E Bochner and Pettis Integrals 407(6)
Appendix F Nonexistence of Types of Linear Forms on Some Spaces 413(4)
Appendix G Separation of Analytic Sets; Borel Injections 417(4)
Appendix H Young-Orlicz Spaces 421(4)
Appendix I Modifications and Versions of Isonormal Processes 425(2)
Subject Index 427(5)
Author Index 432(3)
Index of Notation 435
Volume I
Foreward i(2)
Preface iii
Acknowledgements
Biographical Note 1(6)
Introduction 7(8)
Bibliographical Abbreviations 15(8)
TEXTS 23
Scotus's Theory of Distinctions
23(118)
ScRP = Reportata Parisiensia I, dist. xxxiii, qu.2 & 3 = sections 1 & 2
23(20)
ScQF = Quaestio prima from Quaestiones miscellaneae de formalitatibus = section 3
43(16)
ScOI2 = OrdinatioI, dist.2, pt.2, qu.1 = section 4
59(16)
ScL = Lectura I, dist.2, pt.2, qu.1 = section 5
75(14)
ScQM7.19 = Quaestiones in librum Metaphysicorum VII, qu.19 = section 6
89(24)
ScOI8.3 = Ordinatio I, dist.8, pt.1, qu.3 = section 7
113(10)
ScOI8.4 = Ordinatio I, dist.8, pt.1, qu.4 = section 8
123(12)
ScQQ = Quaestiones quodlibetales, qu.3 = section 9
135(6)
Scotus's Theory of Universals and Individuation
141(146)
ScQM7.18 = Quaestiones in librum Metaphysicorum VII, qu.18 = section 10
141(24)
ScOII = Ordinatio II, dist.3, pt.1, qu. 1-6 = section 11
165(92)
ScQM7.13=Quaestiones in librum Metaphysicorum VII, qu.13 = section 12
257(30)
Ockham's Critique OckOI = Ordinatio I, dist.2, qu. 4-6 = section 13
287