Atnaujinkite slapukų nuostatas

El. knyga: Untitled

4.63/5 (325 ratings by Goodreads)
  • Formatas: 165 pages
  • Serija: From Scratch
  • Išleidimo metai: 04-Mar-2025
  • Leidėjas: Manning Publications
  • Kalba: eng
  • ISBN-13: 9781633435346
  • Formatas: 165 pages
  • Serija: From Scratch
  • Išleidimo metai: 04-Mar-2025
  • Leidėjas: Manning Publications
  • Kalba: eng
  • ISBN-13: 9781633435346

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up!

In Build a Large Language Model (from Scratch), you’ll discover how LLMs work from the inside out. In this insightful book, bestselling author Sebastian Raschka guides you step by step through creating your own LLM, explaining each stage with clear text, diagrams, and examples. You’ll go from the initial design and creation to pretraining on a general corpus, all the way to finetuning for specific tasks.

Build a Large Language Model (from Scratch) teaches you how to:

  • Plan and code all the parts of an LLM
  • Prepare a dataset suitable for LLM training
  • Finetune LLMs for text classification and with your own data
  • Apply instruction tuning techniques to ensure your LLM follows instructions
  • Load pretrained weights into an LLM

The large language models (LLMs) that power cutting-edge AI tools like ChatGPT, Bard, and Copilot seem like a miracle, but they’re not magic. This book demystifies LLMs by helping you build your own from scratch. You’ll get a unique and valuable insight into how LLMs work, learn how to evaluate their quality, and pick up concrete techniques to finetune and improve them.

The process you use to train and develop your own small-but-functional model in this book follows the same steps used to deliver huge-scale foundation models like GPT-4. Your small-scale LLM can be developed on an ordinary laptop, and you’ll be able to use it as your own personal assistant.

Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications.

About the book

Build a Large Language Model (from Scratch) is a one-of-a-kind guide to building your own working LLM. In it, machine learning expert and author Sebastian Raschka reveals how LLMs work under the hood, tearing the lid off the Generative AI black box. The book is filled with practical insights into constructing LLMs, including building a data loading pipeline, assembling their internal building blocks, and finetuning techniques. As you go, you’ll gradually turn your base model into a text classifier tool, and a chatbot that follows your conversational instructions.

About the reader

For readers who know Python. Experience developing machine learning models is useful but not essential.

About the author

Sebastian Raschka has been working on machine learning and AI for more than a decade. Sebastian joined Lightning AI in 2022, where he now focuses on AI and LLM research, developing open-source software, and creating educational material. Prior to that, Sebastian worked at the University of Wisconsin-Madison as an assistant professor in the Department of Statistics, focusing on deep learning and machine learning research. He has a strong passion for education and is best known for his bestselling books on machine learning using open-source software.
Sebastian Raschka is a Staff Research Engineer at Lightning AI, where he works on LLM research and develops open-source software.

The technical editor on this book was David Caswell.