Preface |
|
xv | |
Acknowledgments |
|
xxi | |
I Urban Contexts and Sustainability |
|
1 | (124) |
|
|
3 | (20) |
|
1.1 On the Path to Scenario B |
|
|
4 | (1) |
|
1.2 Objective: Integrate Infrastructure Networks |
|
|
5 | (3) |
|
|
8 | (2) |
|
|
10 | (2) |
|
|
12 | (1) |
|
|
13 | (4) |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
23 | (30) |
|
2.1 Defining Sustainability |
|
|
24 | (9) |
|
2.1.1 Formal Definition of Sustainability |
|
|
24 | (6) |
|
2.1.2 Peak Oil, and Why Fossil Fuels Are Unsustainable |
|
|
30 | (3) |
|
2.2 Sustainability Principles |
|
|
33 | (3) |
|
2.2.1 Two Principles of Sustainability |
|
|
33 | (2) |
|
2.2.2 Limitations and Further Considerations |
|
|
35 | (24) |
|
2.2.2.1 The Rebound Effect |
|
|
35 | (1) |
|
2.2.2.2 Controlling Interdependencies |
|
|
36 | (1) |
|
2.3 The Triple Bottom Line of Sustainability |
|
|
36 | (3) |
|
2.4 The IPAT Equation and the Kaya Identity |
|
|
39 | (3) |
|
2.5 Planetary Boundaries and Nonlinearities |
|
|
42 | (4) |
|
|
46 | (1) |
|
|
47 | (3) |
|
|
50 | (1) |
|
|
51 | (2) |
|
|
53 | (32) |
|
3.1 Malthus and an Essay on the Principle of Population |
|
|
55 | (4) |
|
3.2 Short-Term Population Predictions |
|
|
59 | (6) |
|
3.2.1 Geometric Growth Phase |
|
|
60 | (2) |
|
3.2.2 Arithmetic Growth Phase |
|
|
62 | (1) |
|
3.2.3 Declining Growth Phase |
|
|
62 | (3) |
|
3.3 Long-Term Population Predictions |
|
|
65 | (4) |
|
3.4 The Cohort-Survival Method |
|
|
69 | (3) |
|
|
72 | (5) |
|
|
77 | (5) |
|
|
82 | (1) |
|
|
83 | (2) |
|
|
85 | (40) |
|
4.1 A Brief History of Urban Planning |
|
|
88 | (15) |
|
|
88 | (1) |
|
4.1.2 Ancient Greece and Rome |
|
|
89 | (3) |
|
4.1.3 Medieval Towns and the Renaissance |
|
|
92 | (1) |
|
4.1.4 Baroque Planning, the Expansion of Cities, and the Pedshed |
|
|
93 | (2) |
|
4.1.5 The City Beautiful, the Garden City, and the Radiant City |
|
|
95 | (5) |
|
4.1.6 Greenbelt Towns and the City of Highways |
|
|
100 | (3) |
|
4.2 Essentials of Urban Planning |
|
|
103 | (8) |
|
4.2.1 A City Is Not a Tree |
|
|
103 | (4) |
|
4.2.2 The Image of the City |
|
|
107 | (2) |
|
|
109 | (2) |
|
4.3 Urban Design and Desirable Traits |
|
|
111 | (6) |
|
4.3.1 Lynch's Five Dimensions and Two Metacriteria |
|
|
112 | (3) |
|
4.3.2 Jacobs's Four Conditions for Diversity |
|
|
115 | (2) |
|
|
117 | (3) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
122 | (3) |
II Urban Engineering and Infrastructure Systems |
|
125 | (336) |
|
|
127 | (58) |
|
5.1 Fundamentals of Electricity |
|
|
129 | (16) |
|
5.1.1 Basics of Electricity |
|
|
129 | (4) |
|
5.1.2 Kirchhoff's Laws and Load Types |
|
|
133 | (2) |
|
5.1.3 Series and Parallel Circuits |
|
|
135 | (3) |
|
5.1.4 Alternating Current and Direct Current |
|
|
138 | (2) |
|
|
140 | (2) |
|
|
142 | (3) |
|
|
145 | (6) |
|
5.2.1 Temporal and Spatial Analysis of Electricity Demand in the United States |
|
|
146 | (2) |
|
5.2.2 Real-Time Electricity Demand |
|
|
148 | (3) |
|
5.2.3 Typical Power Rating of Appliances |
|
|
151 | (1) |
|
5.3 Electricity Generation |
|
|
151 | (20) |
|
5.3.1 Coal-Fired Power Plants |
|
|
155 | (2) |
|
5.3.2 Oil- and Natural Gas-Fired Power Plants |
|
|
157 | (1) |
|
5.3.3 Nuclear Power Plants |
|
|
157 | (1) |
|
5.3.4 Geothermal Power Plants |
|
|
158 | (1) |
|
5.3.5 Biomass Power Plants |
|
|
159 | (1) |
|
5.3.6 Solar Thermal Power Plants |
|
|
159 | (2) |
|
5.3.7 Hydroelectric Power Plants |
|
|
161 | (1) |
|
|
162 | (2) |
|
5.3.9 Wave and Tide Power |
|
|
164 | (2) |
|
5.3.10 Solar Photovoltaic Power Plants |
|
|
166 | (3) |
|
5.3.11 Greenhouse Gas Emission Factors |
|
|
169 | (2) |
|
|
171 | (3) |
|
5.4.1 Electricity Storage |
|
|
171 | (1) |
|
5.4.2 Smart Grid and Microgrid |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
175 | (5) |
|
|
180 | (2) |
|
|
182 | (3) |
|
|
185 | (68) |
|
6.1 Fundamentals of Water Resources Engineering |
|
|
187 | (26) |
|
6.1.1 Surface Water Hydrology |
|
|
187 | (7) |
|
|
187 | (2) |
|
6.1.1.2 Hyetographs and Hydrographs |
|
|
189 | (2) |
|
6.1.1.3 Intensity-Duration-Frequency Curves |
|
|
191 | (3) |
|
6.1.2 Flow in Closed Conduits |
|
|
194 | (9) |
|
6.1.2.1 Conservation of Energy |
|
|
196 | (2) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (3) |
|
6.1.3 Flow in Open Channels |
|
|
203 | (5) |
|
6.1.3.1 The Manning Equation |
|
|
203 | (3) |
|
6.1.3.2 Energy, Critical Flow, and the Froude Number |
|
|
206 | (2) |
|
6.1.4 Groundwater Engineering |
|
|
208 | (5) |
|
6.1.4.1 Groundwater Hydrology |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
210 | (3) |
|
|
213 | (7) |
|
6.2.1 Water Consumption Trends |
|
|
213 | (2) |
|
6.2.2 Water Demand by End Use |
|
|
215 | (2) |
|
6.2.3 Water Demand by Household Size |
|
|
217 | (1) |
|
6.2.4 Water Demand by Hour |
|
|
217 | (3) |
|
6.3 Water and Wastewater Treatment |
|
|
220 | (3) |
|
|
220 | (1) |
|
6.3.2 Wastewater Treatment |
|
|
221 | (2) |
|
6.4 Stormwater Management |
|
|
223 | (14) |
|
|
223 | (3) |
|
6.4.2 Green Infrastructure and Low-Impact Development |
|
|
226 | (3) |
|
|
229 | (26) |
|
|
229 | (3) |
|
6.4.3.2 Natural Resources Conservation Service Curve Number Model |
|
|
232 | (5) |
|
|
237 | (4) |
|
|
241 | (1) |
|
|
242 | (6) |
|
|
248 | (3) |
|
|
251 | (2) |
|
|
253 | (68) |
|
7.1 Fundamentals of Transport |
|
|
255 | (20) |
|
7.1.1 Traffic Flow Theory |
|
|
256 | (6) |
|
|
262 | (3) |
|
7.1.3 Public Transit Planning |
|
|
265 | (10) |
|
|
275 | (15) |
|
|
275 | (2) |
|
|
277 | (4) |
|
|
281 | (3) |
|
7.2.4 Greenhouse Gas Emission Factors |
|
|
284 | (3) |
|
7.2.5 Origin-Destination Matrix |
|
|
287 | (3) |
|
7.3 Transport and Land Use |
|
|
290 | (3) |
|
7.4 Transport Modeling and the Four-Step Model |
|
|
293 | (13) |
|
|
295 | (2) |
|
|
297 | (2) |
|
|
299 | (2) |
|
|
301 | (5) |
|
|
306 | (2) |
|
|
308 | (8) |
|
|
316 | (2) |
|
|
318 | (3) |
|
|
321 | (62) |
|
8.1 Fundamentals of Thermal Comfort and Heat Transfer |
|
|
324 | (27) |
|
8.1.1 Principles of Thermal Comfort |
|
|
325 | (1) |
|
8.1.2 Fundamentals of Heat Transfer |
|
|
326 | (18) |
|
|
327 | (5) |
|
|
332 | (4) |
|
|
336 | (5) |
|
8.1.2.4 Combining Heat Transfer Processes |
|
|
341 | (3) |
|
8.1.3 Windows and Air Exchange |
|
|
344 | (5) |
|
|
344 | (1) |
|
|
345 | (4) |
|
8.1.4 Heating and Cooling Efficiency |
|
|
349 | (2) |
|
8.2 Energy Demand in Buildings |
|
|
351 | (8) |
|
|
351 | (4) |
|
8.2.2 Compactness and Shape Factor |
|
|
355 | (1) |
|
8.2.3 Building Energy Demand Trends |
|
|
356 | (3) |
|
8.3 Building Design and Technology Recommendations |
|
|
359 | (13) |
|
|
359 | (4) |
|
|
360 | (1) |
|
|
360 | (1) |
|
|
360 | (1) |
|
|
361 | (2) |
|
|
363 | (23) |
|
8.3.2.1 Turning Off and Down Equipment |
|
|
364 | (1) |
|
|
364 | (1) |
|
|
364 | (1) |
|
|
364 | (1) |
|
8.3.2.5 Reflecting Material/Paint |
|
|
364 | (1) |
|
8.3.2.6 White-Blue-Green Roof |
|
|
364 | (2) |
|
8.3.2.7 Solar Water Heating |
|
|
366 | (1) |
|
8.3.2.8 Solar Photovoltaic |
|
|
367 | (1) |
|
|
367 | (1) |
|
8.3.2.10 Air-Source and Ground-Source Heat Pumps |
|
|
367 | (2) |
|
8.3.2.11 District Heating and Cooling |
|
|
369 | (1) |
|
8.3.2.12 Technologies and Internal Rate of Return |
|
|
369 | (2) |
|
8.3.2.13 Leadership in Energy & Environmental Design Rating |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
373 | (6) |
|
|
379 | (1) |
|
|
380 | (3) |
|
|
383 | (78) |
|
9.1 Fundamentals of Solid Waste Management |
|
|
386 | (25) |
|
|
387 | (4) |
|
9.1.2 Definition of Solid Waste and Solid Waste Management |
|
|
391 | (10) |
|
9.1.3 Physical, Chemical, and Biological Properties of Solid Waste |
|
|
401 | (10) |
|
9.1.3.1 Physical Properties |
|
|
401 | (4) |
|
9.1.3.2 Chemical Properties |
|
|
405 | (4) |
|
9.1.3.3 Biological Properties |
|
|
409 | (2) |
|
9.2 Solid Waste Generation and Composition |
|
|
411 | (21) |
|
|
413 | (4) |
|
9.2.2 Solid Waste Trends and Composition |
|
|
417 | (9) |
|
9.2.3 Solid Waste Composition by Sector |
|
|
426 | (6) |
|
|
432 | (17) |
|
9.3.1 Solid Waste Separation and Processing |
|
|
434 | (3) |
|
9.3.2 Solid Waste Transformation |
|
|
437 | (5) |
|
|
437 | (1) |
|
|
438 | (4) |
|
|
442 | (1) |
|
9.3.3 Solid Waste Disposal |
|
|
442 | (23) |
|
|
442 | (3) |
|
9.3.3.2 Sanitary Landfill |
|
|
445 | (4) |
|
|
449 | (2) |
|
|
451 | (6) |
|
|
457 | (2) |
|
|
459 | (2) |
III Urban Metabolism and Novel Approaches |
|
461 | (144) |
|
10 Urban Metabolism and Infrastructure Integration |
|
|
463 | (60) |
|
|
465 | (20) |
|
|
469 | (6) |
|
|
475 | (1) |
|
|
475 | (4) |
|
|
479 | (6) |
|
10.2 Infrastructure Interdependencies |
|
|
485 | (15) |
|
|
487 | (5) |
|
|
492 | (2) |
|
|
494 | (1) |
|
|
495 | (1) |
|
|
496 | (2) |
|
|
498 | (1) |
|
|
499 | (1) |
|
10.3 Integrating and Decentralizing Urban Infrastructure Systems |
|
|
500 | (10) |
|
10.3.1 The Design Patterns of Infrastructure |
|
|
502 | (2) |
|
10.3.2 Integration-Decentralization Matrix |
|
|
504 | (6) |
|
|
510 | (2) |
|
|
512 | (6) |
|
|
518 | (2) |
|
|
520 | (3) |
|
11 Science of Cities and Machine Learning |
|
|
523 | (62) |
|
11.1 The Science of Cities |
|
|
525 | (26) |
|
11.1.1 Complexity Science |
|
|
525 | (3) |
|
11.1.2 Scaling Laws in Cities |
|
|
528 | (4) |
|
|
532 | (4) |
|
11.1.4 Simple Population Models |
|
|
536 | (4) |
|
|
540 | (11) |
|
|
551 | (17) |
|
11.2.1 Basic Concepts of Machine Learning |
|
|
552 | (4) |
|
11.2.2 K-means Clustering |
|
|
556 | (2) |
|
11.2.3 Decision Tree Learning |
|
|
558 | (6) |
|
|
564 | (4) |
|
|
568 | (4) |
|
|
572 | (7) |
|
|
579 | (3) |
|
|
582 | (3) |
|
|
585 | (20) |
|
12.1 Three Paradigm-Shifting Changes |
|
|
587 | (11) |
|
|
588 | (2) |
|
12.1.2 The Rise of New Materials |
|
|
590 | (4) |
|
12.1.3 Organizational Change |
|
|
594 | (4) |
|
12.2 Final Thoughts and the Four-Step Urban Infrastructure Design Process |
|
|
598 | (2) |
|
|
600 | (1) |
|
|
601 | (1) |
|
|
602 | (3) |
Appendix |
|
605 | (24) |
|
|
605 | (6) |
|
|
611 | (1) |
|
C Level-of-Service Diagram |
|
|
612 | (2) |
|
|
614 | (15) |
Index |
|
629 | |