Atnaujinkite slapukų nuostatas

El. knyga: Urban Engineering for Sustainability

  • Formatas: EPUB+DRM
  • Serija: The MIT Press
  • Išleidimo metai: 03-Dec-2019
  • Leidėjas: MIT Press
  • Kalba: eng
  • ISBN-13: 9780262356756
  • Formatas: EPUB+DRM
  • Serija: The MIT Press
  • Išleidimo metai: 03-Dec-2019
  • Leidėjas: MIT Press
  • Kalba: eng
  • ISBN-13: 9780262356756

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science.

This textbook introduces urban infrastructure from an engineering perspective, with an emphasis on sustainability. Bringing together both fundamental principles and practical knowledge from civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science, the book transcends disciplinary boundaries by viewing urban infrastructures as integrated networks.

The text devotes a chapter to each of five engineering systems—electricity, water, transportation, buildings, and solid waste—covering such topics as fundamentals, demand, management, technology, and analytical models. Other chapters present a formal definition of sustainability; discuss population forecasting techniques; offer a history of urban planning, from the Neolithic era to Kevin Lynch and Jane Jacobs; define and discuss urban metabolism and infrastructure integration, reviewing system interdependencies; and describe approaches to urban design that draw on complexity theory, algorithmic models, and machine learning. Throughout, a hypothetical city state, Civitas, is used to explain and illustrate the concepts covered. Each chapter includes working examples and problem sets. An appendix offers tables, diagrams, and conversion factors. The book can be used in advanced undergraduate and graduate courses in civil engineering and as a reference for practitioners. It can also be helpful in preparation for the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) exams.



A textbook that introduces integrated, sustainable design of urban infrastructures, drawing on civil engineering, environmental engineering, urban planning, electrical engineering, mechanical engineering, and computer science.
Preface xv
Acknowledgments xxi
I Urban Contexts and Sustainability 1(124)
1 Introduction
3(20)
1.1 On the Path to Scenario B
4(1)
1.2 Objective: Integrate Infrastructure Networks
5(3)
1.3 Why Cities?
8(2)
1.4 Civitas
10(2)
1.5 Book Outline
12(1)
1.6 Measures and Units
13(4)
1.7 Missing Topics
17(1)
1.8 Conclusion
18(1)
Problem Set
19(1)
Notes
20(1)
References
21(2)
2 Sustainability
23(30)
2.1 Defining Sustainability
24(9)
2.1.1 Formal Definition of Sustainability
24(6)
2.1.2 Peak Oil, and Why Fossil Fuels Are Unsustainable
30(3)
2.2 Sustainability Principles
33(3)
2.2.1 Two Principles of Sustainability
33(2)
2.2.2 Limitations and Further Considerations
35(24)
2.2.2.1 The Rebound Effect
35(1)
2.2.2.2 Controlling Interdependencies
36(1)
2.3 The Triple Bottom Line of Sustainability
36(3)
2.4 The IPAT Equation and the Kaya Identity
39(3)
2.5 Planetary Boundaries and Nonlinearities
42(4)
2.6 Conclusion
46(1)
Problem Set
47(3)
Notes
50(1)
References
51(2)
3 Population
53(32)
3.1 Malthus and an Essay on the Principle of Population
55(4)
3.2 Short-Term Population Predictions
59(6)
3.2.1 Geometric Growth Phase
60(2)
3.2.2 Arithmetic Growth Phase
62(1)
3.2.3 Declining Growth Phase
62(3)
3.3 Long-Term Population Predictions
65(4)
3.4 The Cohort-Survival Method
69(3)
3.5 Conclusion
72(5)
Problem Set
77(5)
Notes
82(1)
References
83(2)
4 Urban Planning
85(40)
4.1 A Brief History of Urban Planning
88(15)
4.1.1 The Neolithic Era
88(1)
4.1.2 Ancient Greece and Rome
89(3)
4.1.3 Medieval Towns and the Renaissance
92(1)
4.1.4 Baroque Planning, the Expansion of Cities, and the Pedshed
93(2)
4.1.5 The City Beautiful, the Garden City, and the Radiant City
95(5)
4.1.6 Greenbelt Towns and the City of Highways
100(3)
4.2 Essentials of Urban Planning
103(8)
4.2.1 A City Is Not a Tree
103(4)
4.2.2 The Image of the City
107(2)
4.2.3 Eyes on the Street
109(2)
4.3 Urban Design and Desirable Traits
111(6)
4.3.1 Lynch's Five Dimensions and Two Metacriteria
112(3)
4.3.2 Jacobs's Four Conditions for Diversity
115(2)
4.4 Conclusion
117(3)
Problem Set
120(1)
Notes
121(1)
References
122(3)
II Urban Engineering and Infrastructure Systems 125(336)
5 Electricity
127(58)
5.1 Fundamentals of Electricity
129(16)
5.1.1 Basics of Electricity
129(4)
5.1.2 Kirchhoff's Laws and Load Types
133(2)
5.1.3 Series and Parallel Circuits
135(3)
5.1.4 Alternating Current and Direct Current
138(2)
5.1.5 Three-Phase Power
140(2)
5.1.6 The Power Grid
142(3)
5.2 Electricity Demand
145(6)
5.2.1 Temporal and Spatial Analysis of Electricity Demand in the United States
146(2)
5.2.2 Real-Time Electricity Demand
148(3)
5.2.3 Typical Power Rating of Appliances
151(1)
5.3 Electricity Generation
151(20)
5.3.1 Coal-Fired Power Plants
155(2)
5.3.2 Oil- and Natural Gas-Fired Power Plants
157(1)
5.3.3 Nuclear Power Plants
157(1)
5.3.4 Geothermal Power Plants
158(1)
5.3.5 Biomass Power Plants
159(1)
5.3.6 Solar Thermal Power Plants
159(2)
5.3.7 Hydroelectric Power Plants
161(1)
5.3.8 Wind Farms
162(2)
5.3.9 Wave and Tide Power
164(2)
5.3.10 Solar Photovoltaic Power Plants
166(3)
5.3.11 Greenhouse Gas Emission Factors
169(2)
5.4 Future Grid
171(3)
5.4.1 Electricity Storage
171(1)
5.4.2 Smart Grid and Microgrid
172(2)
5.5 Conclusion
174(1)
Problem Set
175(5)
Notes
180(2)
References
182(3)
6 Water
185(68)
6.1 Fundamentals of Water Resources Engineering
187(26)
6.1.1 Surface Water Hydrology
187(7)
6.1.1.1 Watershed
187(2)
6.1.1.2 Hyetographs and Hydrographs
189(2)
6.1.1.3 Intensity-Duration-Frequency Curves
191(3)
6.1.2 Flow in Closed Conduits
194(9)
6.1.2.1 Conservation of Energy
196(2)
6.1.2.2 Friction Losses
198(1)
6.1.2.3 Pumps
199(1)
6.1.2.4 Pipe Networks
200(3)
6.1.3 Flow in Open Channels
203(5)
6.1.3.1 The Manning Equation
203(3)
6.1.3.2 Energy, Critical Flow, and the Froude Number
206(2)
6.1.4 Groundwater Engineering
208(5)
6.1.4.1 Groundwater Hydrology
209(1)
6.1.4.2 Darcy's Law
210(1)
6.1.4.3 Pumps
210(3)
6.2 Water Demand
213(7)
6.2.1 Water Consumption Trends
213(2)
6.2.2 Water Demand by End Use
215(2)
6.2.3 Water Demand by Household Size
217(1)
6.2.4 Water Demand by Hour
217(3)
6.3 Water and Wastewater Treatment
220(3)
6.3.1 Water Treatment
220(1)
6.3.2 Wastewater Treatment
221(2)
6.4 Stormwater Management
223(14)
6.4.1 Sewer Systems
223(3)
6.4.2 Green Infrastructure and Low-Impact Development
226(3)
6.4.3 Runoff Modeling
229(26)
6.4.3.1 Rational Method
229(3)
6.4.3.2 Natural Resources Conservation Service Curve Number Model
232(5)
6.5 Energy Use in Water
237(4)
6.6 Conclusion
241(1)
Problem Set
242(6)
Notes
248(3)
References
251(2)
7 Transport
253(68)
7.1 Fundamentals of Transport
255(20)
7.1.1 Traffic Flow Theory
256(6)
7.1.2 Pedestrian Flow
262(3)
7.1.3 Public Transit Planning
265(10)
7.2 Travel Demand
275(15)
7.2.1 Trips
275(2)
7.2.2 Distance Traveled
277(4)
7.2.3 Mode Share
281(3)
7.2.4 Greenhouse Gas Emission Factors
284(3)
7.2.5 Origin-Destination Matrix
287(3)
7.3 Transport and Land Use
290(3)
7.4 Transport Modeling and the Four-Step Model
293(13)
7.4.1 Trip Generation
295(2)
7.4.2 Trip Distribution
297(2)
7.4.3 Mode Split
299(2)
7.4.4 Assignment
301(5)
7.5 Conclusion
306(2)
Problem Set
308(8)
Notes
316(2)
References
318(3)
8 Buildings
321(62)
8.1 Fundamentals of Thermal Comfort and Heat Transfer
324(27)
8.1.1 Principles of Thermal Comfort
325(1)
8.1.2 Fundamentals of Heat Transfer
326(18)
8.1.2.1 Conduction
327(5)
8.1.2.2 Convection
332(4)
8.1.2.3 Radiation
336(5)
8.1.2.4 Combining Heat Transfer Processes
341(3)
8.1.3 Windows and Air Exchange
344(5)
8.1.3.1 Windows
344(1)
8.1.3.2 Air Exchange
345(4)
8.1.4 Heating and Cooling Efficiency
349(2)
8.2 Energy Demand in Buildings
351(8)
8.2.1 Degree Days
351(4)
8.2.2 Compactness and Shape Factor
355(1)
8.2.3 Building Energy Demand Trends
356(3)
8.3 Building Design and Technology Recommendations
359(13)
8.3.1 Better Designs
359(4)
8.3.1.1 Size
360(1)
8.3.1.2 Compactness
360(1)
8.3.1.3 Orientation
360(1)
8.3.1.4 Shading
361(2)
8.3.2 Technologies
363(23)
8.3.2.1 Turning Off and Down Equipment
364(1)
8.3.2.2 Sealing Leaks
364(1)
8.3.2.3 Windows
364(1)
8.3.2.4 Insulation
364(1)
8.3.2.5 Reflecting Material/Paint
364(1)
8.3.2.6 White-Blue-Green Roof
364(2)
8.3.2.7 Solar Water Heating
366(1)
8.3.2.8 Solar Photovoltaic
367(1)
8.3.2.9 Vertical Gardens
367(1)
8.3.2.10 Air-Source and Ground-Source Heat Pumps
367(2)
8.3.2.11 District Heating and Cooling
369(1)
8.3.2.12 Technologies and Internal Rate of Return
369(2)
8.3.2.13 Leadership in Energy & Environmental Design Rating
371(1)
8.4 Conclusion
372(1)
Problem Set
373(6)
Notes
379(1)
References
380(3)
9 Solid Waste
383(78)
9.1 Fundamentals of Solid Waste Management
386(25)
9.1.1 History
387(4)
9.1.2 Definition of Solid Waste and Solid Waste Management
391(10)
9.1.3 Physical, Chemical, and Biological Properties of Solid Waste
401(10)
9.1.3.1 Physical Properties
401(4)
9.1.3.2 Chemical Properties
405(4)
9.1.3.3 Biological Properties
409(2)
9.2 Solid Waste Generation and Composition
411(21)
9.2.1 Solid Waste Audit
413(4)
9.2.2 Solid Waste Trends and Composition
417(9)
9.2.3 Solid Waste Composition by Sector
426(6)
9.3 Solid Waste Disposal
432(17)
9.3.1 Solid Waste Separation and Processing
434(3)
9.3.2 Solid Waste Transformation
437(5)
9.3.2.1 Reuse
437(1)
9.3.2.2 Recycle
438(4)
9.3.2.3 Recover
442(1)
9.3.3 Solid Waste Disposal
442(23)
9.3.3.1 Incineration
442(3)
9.3.3.2 Sanitary Landfill
445(4)
9.4 Conclusion
449(2)
Problem Set
451(6)
Notes
457(2)
References
459(2)
III Urban Metabolism and Novel Approaches 461(144)
10 Urban Metabolism and Infrastructure Integration
463(60)
10.1 Urban Metabolism
465(20)
10.1.1 Materials
469(6)
10.1.2 Food
475(1)
10.1.3 Energy
475(4)
10.1.4 Water
479(6)
10.2 Infrastructure Interdependencies
485(15)
10.2.1 Transport
487(5)
10.2.2 Water
492(2)
10.2.3 Utility
494(1)
10.2.4 Electricity
495(1)
10.2.5 Telecom
496(2)
10.2.6 Solid Waste
498(1)
10.2.7 Buildings
499(1)
10.3 Integrating and Decentralizing Urban Infrastructure Systems
500(10)
10.3.1 The Design Patterns of Infrastructure
502(2)
10.3.2 Integration-Decentralization Matrix
504(6)
10.4 Conclusion
510(2)
Problem Set
512(6)
Notes
518(2)
References
520(3)
11 Science of Cities and Machine Learning
523(62)
11.1 The Science of Cities
525(26)
11.1.1 Complexity Science
525(3)
11.1.2 Scaling Laws in Cities
528(4)
11.1.3 Zipf's Law
532(4)
11.1.4 Simple Population Models
536(4)
11.1.5 Network Science
540(11)
11.2 Machine Learning
551(17)
11.2.1 Basic Concepts of Machine Learning
552(4)
11.2.2 K-means Clustering
556(2)
11.2.3 Decision Tree Learning
558(6)
11.2.4 Neural Networks
564(4)
11.3 Conclusion
568(4)
Problem Set
572(7)
Notes
579(3)
References
582(3)
12 Conclusion
585(20)
12.1 Three Paradigm-Shifting Changes
587(11)
12.1.1 Smart Cities
588(2)
12.1.2 The Rise of New Materials
590(4)
12.1.3 Organizational Change
594(4)
12.2 Final Thoughts and the Four-Step Urban Infrastructure Design Process
598(2)
Problem Set
600(1)
Notes
601(1)
References
602(3)
Appendix 605(24)
A Tables
605(6)
B Moody Diagram
611(1)
C Level-of-Service Diagram
612(2)
D Equation Sheet
614(15)
Index 629