Atnaujinkite slapukų nuostatas

El. knyga: Variational Methods For Strongly Indefinite Problems

(Chinese Academy Of Sciences, China)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This unique book focuses on critical point theory for strongly indefinite functionals in order to deal with nonlinear variational problems in areas such as physics, mechanics and economics. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, the book presents for the first time a deformation theory in locally convex topological vector spaces. It also offers satisfying variational settings for homoclinic-type solutions to Hamiltonian systems, Schrödinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems. The concepts and methods used open up new topics worthy of in-depth exploration, and link the subject with other branches of mathematics, such as topology and geometry, providing a perspective for further studies in these areas. The analytical framework can be used to handle more infinite-dimensional Hamiltonian systems.
Preface v
Introduction
1(4)
Lipschitz partitions of unity
5(10)
Deformations on locally convex topological vector spaces
15(10)
Critical point theorems
25(10)
Homoclinics in Hamiltonian systems
35(32)
Existence and multiplicity results for periodic Hamiltonians
35(4)
Spectrum of the Hamiltonian operator
39(2)
Variational setting
41(1)
Linking structure
42(3)
The (C) sequences
45(8)
Proofs of the main results
53(1)
Non periodic Hamiltonians
54(13)
Variational setting
56(4)
Linking structure
60(2)
The (C)-condition
62(3)
Proof of Theorem 5.3
65(2)
Standing waves of nonlinear Schrodinger equations
67(30)
Introduction and results
67(4)
Preliminaries
71(1)
The linking structure
72(2)
The (C) sequences
74(7)
Proofs of the existence and multiplicity
81(1)
Semiclassical states of a system of Schodinger equations
82(15)
An equivalent variational problem
84(4)
Proofs of Theorem 6.5
88(5)
Proof of Theorem 6.6
93(4)
Solutions of nonlinear Dirac equations
97(42)
Relative studies
97(3)
Existence results for scalar potentials
100(3)
Variational setting
103(3)
The asymptotically quadratic case
106(10)
Super-quadratic case
116(5)
More general external fields
121(12)
Main results
122(1)
Variational arguments
123(8)
Proof of Theorem 7.8
131(1)
Proofs of Theorems 7.6 and 7.7
131(2)
Semiclassical solutions
133(6)
Solutions of a system of diffusion equations
139(22)
Reviews
139(3)
Main results
142(1)
Linear preliminaries
143(3)
Functional setting
146(5)
Solutions to (FS)
151(3)
Some extensions
154(7)
0 is a boundary point of σ(S)
154(1)
More general symmetries
155(1)
More general nonlinearities
155(1)
More general systems
156(5)
Bibliography 161(6)
Index 167