Atnaujinkite slapukų nuostatas

El. knyga: Variational Principles in Physics

  • Formatas: PDF+DRM
  • Išleidimo metai: 12-Mar-2007
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9780387377483
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 12-Mar-2007
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9780387377483
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Optimization under constraints is an essential part of everyday life. Indeed, we routinely solve problems by striking a balance between contradictory interests, individual desires and material contingencies. This notion of equilibrium was dear to thinkers of the enlightenment, as illustrated by Montesquieu's famous formulation: "In all magistracies, the greatness of the power must be compensated by the brevity of the duration."Astonishingly, natural laws are guided by a similar principle. Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be known as Fermat's principle, a cornerstone of geometrical optics. Variational Principles in Physics explains variational principles and charts their use throughout modern physics. The heart of the book is devoted to the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. Prof. Basdevant also offers simple but rich first impressions of Einstein's General Relativity, Feynman's Quantum Mechanics, and more revealing and amazing interconnections between various fields of physics.

Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be known as Fermat's principle, a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. The heart of the book is devoted to the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein's General Relativity, Feynman's Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.

Recenzijos

From the reviews:









"This book is based on a course given by Professor Basdevant at the Ecole Polytechnique, near Paris. it would be an excellent basis for a course, provided one has the right collection of undergraduates. The book could also be used at a more advanced level in many ways . For anyone with radical tendencies in this direction, Basdevants book will provide an elegant launching point." (L. S. Schulman, SIAM Review, Vol. 49 (4), 2007)



"It invites the reader onto the vessel variational principles to embark on a journey through a variety of different areas and regions of physics. In general independent of individual preferences, Basdevants book provides a well-balanced overview of various old and new areas of theoretical physics based on an approach by variational principles. Not only will students profit from this book, but also more advanced readers might get captivated by it." (H. Hogreve, Mathematical Reviews, Issue 2009 f)

Preface v
Introduction
1(20)
Esthetics and Physics
1(2)
Metaphysics and Science
3(1)
Numbers, Music, and Quantum Physics
4(3)
The Age of Enlightenment and the Principle of the Best
7(1)
The Fermat Principle and Its Consequences
8(1)
Variational Principles
9(3)
The Modern Era, from Lagrange to Einstein and Feynman
12(9)
Variational Principles
21(26)
The Fermat Principle and Variational Calculus
22(8)
Least Time Principle
22(4)
Variational Calculus of Euler and Lagrange
26(1)
Mirages and Curved Rays
27(3)
Examples of the Principle of Natural Economy
30(5)
Maupertuis Principle
30(1)
Shape of a Massive String
31(1)
Kirchhoff's Laws
32(1)
Electrostatic Potential
33(1)
Soap Bubbles
34(1)
Thermodynamic Equilibrium: Principle of Maximal Disorder
35(8)
Principle of Equal Probability of States
35(1)
Most Probable Distribution and Equilibrium
36(1)
Lagrange Multipliers
37(1)
Boltzmann Factor
38(1)
Equalization of Temperatures
39(1)
The Ideal Gas
40(1)
Boltzmann's Entropy
41(1)
Heat and Work
42(1)
Problems
43(4)
The Analytical Mechanics of Lagrange
47(20)
Lagrangian Formalism and the Least Action Principle
49(4)
Least Action Principle
49(1)
Lagrange--Euler Equations
50(2)
Operation of the Optimization Principle
52(1)
Invariances and Conservation Laws
53(5)
Conjugate Momenta and Generalized Momenta
53(1)
Cyclic Variables
54(1)
Energy and Translations in Time
54(2)
Momentum and Translations in Space
56(1)
Angular Momentum and Rotations
57(1)
Dynamical Symmetries
57(1)
Velocity-Dependent Forces
58(3)
Dissipative Systems
58(1)
Lorentz Force
59(1)
Gauge Invariance
60(1)
Momentum
61(1)
Lagrangian of a Relativistic Particle
61(4)
Free Particle
61(1)
Energy and Momentum
62(1)
Interaction with an Electromagnetic Field
63(2)
Problems
65(2)
Hamilton's Canonical Formalism
67(30)
Hamilton's Canonical Formalism
68(2)
Canonical Equations
69(1)
Dynamical Systems
70(3)
Poincare and Chaos in the Solar System
71(1)
The Butterfly Effect and the Lorenz Attractor
71(2)
Poisson Brackets and Phase Space
73(8)
Time Evolution and Constants of the Motion
74(1)
Canonical Transformations
75(3)
Phase Space; Liouville's Theorem
78(2)
Analytical Mechanics and Quantum Mechanics
80(1)
Charged Particle in an Electromagnetic Field
81(1)
Hamiltonian
81(1)
Gauge Invariance
82(1)
The Action and the Hamilton--Jacobi Equation
82(7)
The Action as a Function of the Coordinates and Time
83(2)
The Hamilton--Jacobi Equation and Jacobi Theorem
85(2)
Conservative Systems, the Reduced Action, and the Maupertuis Principle
87(2)
Analytical Mechanics and Optics
89(3)
Geometric Limit of Wave Optics
89(2)
Semiclassical Approximation in Quantum Mechanics
91(1)
Problems
92(5)
Lagrangian Field Theory
97(10)
Vibrating String
98(1)
Field Equations
99(2)
Generalized Lagrange--Euler Equations
99(1)
Hamiltonian Formalism
100(1)
Scalar Field
101(1)
Electromagnetic Field
102(2)
Equations of First Order in Time
104(1)
Diffusion Equation
104(1)
Schrodinger Equation
104(1)
Problems
105(2)
Motion in a Curved Space
107
Curved Spaces
108
Generalities
108
Metric Tensor
110
Examples
111
Free Motion in a Curved Space
112
Lagrangian
113
Equations of Motion
113
Simple Examples
114
Conjugate Momenta and the Hamiltonian
117
Geodesic Lines
117
Definition
117
Equation of the Geodesics
118
Examples
119
Maupertuis Principle and Geodesics
121
Gravitation and the Curvature of Space-Time
122
Newtonian Gravitation and Relativity
122
The Schwarzschild Metric
124
Gravitation and Time Flow
125
Precession of Mercury's Perihelion
125
Gravitational Deflection of Light Rays
130
Gravitational Optics and Mirages
133
Gravitational Lensing
133
Gravitational Mirages
134
Baryonic Dark Matter
139
Problems
144


A graduate of the Ecole Normale Superieure, Jean-Louis Basdevant is Professor and Chair of the Department of Physics at the Ecole Polytechnique, and Director of Research for the CNRS. Specializing in the theoretical physics of elementary particles, quantum field theory and astrophysics, Prof. Basdevant works in the Leprince-Ringuet Laboratory at the Ecole Polytechnique.