Atnaujinkite slapukų nuostatas

El. knyga: Vehicle Collision Dynamics: Analysis and Reconstruction

(Associate Professor, Department of Industrial Engineering, University of Florence, Italy)
  • Formatas: PDF+DRM
  • Išleidimo metai: 15-Jan-2020
  • Leidėjas: Butterworth-Heinemann Inc
  • Kalba: eng
  • ISBN-13: 9780128127513
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 15-Jan-2020
  • Leidėjas: Butterworth-Heinemann Inc
  • Kalba: eng
  • ISBN-13: 9780128127513
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Vehicle Crash Modeling and Analysis provides a unified framework and timely collection of up-to-date results on front crash, side crash and car to car crashes. The book is ideal as a reference, with an approach that's simple, clear, and easy to comprehend. As the mathematical and software-based modelling and analysis of vehicle crash scenarios have not been systematically investigated, this is an ideal source for further study. Numerous academic and industry studies have analyzed vehicle safety during physical crash scenarios, thus material responses during crashes serve as one of the most important performance indices for mechanical design problems.

In addition to mathematical methodologies, this book provides thorough coverage of computer simulations, software-based modeling, and an analysis of methods capable of providing more flexibility.

  • Unifies existing and emerging concepts concerning vehicle crash dynamics
  • Provides a series of latest results in mathematical-based modeling from front and oblique perspectives
  • Contains almost everything needed to capture the essence of model development and analysis for vehicle crash
  • Includes both numerical and simulation results given in each chapter
  • Presents a comprehensive, up-to-date reference that encourages further study
Preface xi
Acknowledgment xv
1 Structural behavior of the vehicle during the impact
1(1)
1.1 Crashworthiness structures and phenomenological aspects of the impact
1(4)
1.2 Pulse acceleration curve
5(6)
1.2.1 Centroid time
9(2)
1.3 Force---deformation curve
11(3)
1.4 Distribution of the impact forces over time and space
14(1)
1.5 Parameters of influence for the force-deformation curves
15(14)
1.5.1 Vehicle model
17(1)
1.5.2 Offset
17(4)
1.5.3 Oblique impact
21(1)
1.5.4 Underride/override
22(2)
1.5.5 Impact speed
24(3)
References
27(2)
2 Impact impulsive models
29(1)
2.1 Impact models
29(2)
2.2 Contact plane, center of impact
31(2)
2.3 Momentum, impulse, and friction coefficient
33(2)
2.4 Coefficient of restitution
35(3)
2.4.1 Closing speed
37(1)
2.4.2 Mass effect
38(1)
2.4.3 Structural aspects
38(1)
2.5 Centered and oblique impacts
38(1)
2.6 Model with three degrees of freedom
39(13)
2.6.1 Full and sliding impact
42(4)
2.6.2 Coefficient of restitution at the center of impact
46(2)
2.6.3 Directions of pre- and postimpact speeds
48(2)
2.6.4 Impact against a rigid barrier
50(2)
2.7 Sensitivity analysis
52(6)
2.8 Energy
58(8)
2.8.1 Energy and Kelvin's theorem
59(2)
2.8.2 Normal and tangential dissipated energy
51(5)
2.9 Scalar equations
66(1)
2.10 Speed change in the center of the impact
67(3)
2.11 Constant acceleration circle
70(3)
References
71(2)
Further reading
73(1)
3 Models for the structural vehicle behaviour
73(2)
3.1 Lumped mass models
73(1)
3.1.1 Mass-spring model (Campbell model)
73(9)
3.1.2 McHenry model
82(5)
3.1.3 Kelvin model
87(6)
3.2 Pulse models
93(2)
3.2.1 Halfsine pulse shape
95(3)
3.2.2 Haversine pulse shape
98(2)
3.2.3 Triangular pulse shape
100(1)
3.2.4 Macmillan model
101(6)
3.2.5 Example
107(5)
3.3 Direct integration of the curves F(x)
112(4)
3.4 Reduced order lumped mass model
116(9)
3.4.1 Model description
117(6)
References
123(2)
4 Energy loss
125(1)
4.1 The classical approach to estimate the energy loss
126(3)
4.2 Correction for oblique impacts
129(5)
4.2.1 Measurement of deformation depths
133(1)
4.3 Determination of A and B stiffness coefficients from the residual crush
134(1)
4.3.1 Crash against fix rigid barrier
135(1)
4.3.2 Crash against a mobile rigid barrier
136(1)
4.3.3 Oblique crash against fix rigid barrier
137(2)
4.4 Determination of A and B stiffness coefficients from dynamic deformation
139(1)
4.5 Energy equivalent speed
140(6)
4.6 Triangle method
146(7)
4.7 Triangle method with dynamic deformations
153(4)
References
154(3)
5 Crash analysis and reconstruction
157(2)
5.1 Crash analysis
159(1)
5.1.1 Impact configuration
160(1)
5.1.2 Center of impact and contact plan
161(3)
5.1.3 Principal direction of forces
164(2)
5.1.4 Postimpact phase analysis
166(1)
5.1.5 Energy loss evaluation
167(1)
5.1.6 Preimpact velocity calculation
168(1)
5.1.7 Results check
169(3)
5.2 Example
172(21)
5.2.1 Impact configuration and point of impact
173(1)
5.2.2 Center of impact an contact plane
174(2)
5.2.3 Principal direction of forces evaluation
176(1)
5.2.4 Postimpact analysis
177(1)
5.2.5 Energy loss calculation
177(5)
5.2.6 Preimpact velocity calculation using the method based on momentum calculation
182(4)
5.2.7 Preimpact speed calculation based on deformations measurements
186(3)
5.2.8 Velocities from the video analysis
189(2)
References
191(2)
Index 193
Professor Vangi deals with several aspects of machine design (vehicle dynamics, road safety and accident reconstruction, materials, reliability design, stress experimental analysis, non-destructive testing) producing both experimental and theoretical works. In the last fifteen years, he has been researching vehicle dynamics and safety, and road accident reconstruction methods. Specifically, his recent research focuses on methods for evaluation of energy loss during vehicle impact, fuzzy procedure to analyze car-pedestrian accidents and evaluate the whiplash risk, human factor in road accidents.