Atnaujinkite slapukų nuostatas

El. knyga: Vehicle Dynamics and Control

  • Formatas: PDF+DRM
  • Serija: Mechanical Engineering Series
  • Išleidimo metai: 04-Jun-2006
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9780387288239
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Mechanical Engineering Series
  • Išleidimo metai: 04-Jun-2006
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9780387288239
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book presents dynamic models and control systems useful for a large number of vehicle applications. Dynamic models are developed from first principles.  Dynamic models with different levels of detail are presented for each application, with the limitations of each model clearly explained.  The book presents in-depth coverage of vehicle control systems and applications including cruise control, ABS, adaptive cruise control, automated lane keeping, automated highway systems, engine control, passive, active and semi-active suspensions, tire models and tire-road friction estimation.

Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system topics covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire models and tire-road friction estimation. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically.The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on vehicle dynamics and control.

Recenzijos

From the reviews: "The aim of this book is to provide a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. ! This book is an excellent resource to researchers who work on the development of control systems. It can also serve as a textbook for a graduate level course on vehicle dynamics and control." (Mihail Megan, Zentralblatt MATH, Vol. 1097 (23), 2006)

Dedication v
Preface x
Acknowledgments xxv
1. INTRODUCTION
1(14)
1.1 Driver Assistance Systems
2(1)
1.2 Active Stability Control Systems
2(2)
1.3 Ride Quality
4(1)
1.4 Technologies for Addressing Traffic Congestion
5(4)
1.4.1 Automated highway systems
6(1)
1.4.2 Traffic friendly adaptive cruise control
6(1)
1.4.3 Narrow tilt-controlled comuuter vehicles
7(2)
1.5 Emissions and Fuel Economy
9(2)
1.5.1 Hybrid electric vehicles
10(1)
1.5.2 Fuel cell vehicles
11(1)
References
11(4)
2. LATERAL VEHICLE DYNAMICS
15(36)
2.1 Lateral Systems Under Commercial Development
15(5)
2.1.1 Lane departure warning
16(1)
2.1.2 Lane keeping systems
17(1)
2.1.3 Yaw stability control systems
18(2)
2.2 Kinematic Model of Lateral Vehicle Motion
20(7)
2.3 Bicycle Model of Lateral Vehicle Dynamics
27(6)
2.4 Motion of Particle Relative to a rotating Frame
33(2)
2.5 Dynamic Model in Terms of Error with Respect to Road
35(4)
2.6 Dynamic Model in Terms of Yaw Rate and Slip Angle
39(2)
2.7 From Body-Fixed to Global Coordinates
41(2)
2.8 Road Model
43(3)
2.9
Chapter Summary
46(1)
Nomenclature
47(1)
References
48(3)
3. STEERING CONTROL FOR AUTOMATED LANE KEEPING
51(44)
3.1 State Feedback
51(4)
3.2 Steady State Error from Dynamic Equations
55(4)
3.3 Understanding Steady State Cornering
59(7)
3.3.1 Steering angle for steady state cornering
59(5)
3.3.2 Can the yaw angle error be zero?
64(1)
3.3.3 Is non-zero yaw error a concern?
65(1)
3.4 Consideration of Varying Longitudinal Velocity
66(2)
3.5 Output Feedback
68(2)
3.6 Unity feedback Loop System
70(2)
3.7 Loop Analysis with a Proportional Controller
72(7)
3.8 Loop Analysis with a Lead Compensator
79(4)
3.9 Simulation of Performance with Lead Compensator
83(1)
3.10 Analysis if Closed-Loop Performance
84(4)
3.10.1 Performance variation with vehicle speed
84(2)
3.10.2 Performance variation with sensor location
86(2)
3.11 Compensator Design with Look-Ahead Sensor Measurement
88(2)
3.12
Chapter Summary
90(1)
Nomenclature
90(2)
References
92(3)
4. LONGITUDINAL VEHICLE DYNAMICS
95(28)
4.1 Longitudinal Vehicle Dynamics
95(16)
4.1.1 Aerodynamic drag force
97(2)
4.1.2 Longitudinal tire force
99(2)
4.1.3 Why does longitudinal tire force depend on slip?
101(3)
4.1.4 Rolling resistance
104(2)
4.1.5 Calculation of normal tire forces
106(2)
4.1.6 Calculation of effective tire radius
108(3)
4.2 Driveline Dynamics
111(9)
4.2.1 Torque converter
112(2)
4.2.2 Transmission dynamics
114(2)
4.2.3 Engine dynamics
116(2)
4.2.4 Wheel dynamics
118(2)
4.3
Chapter Summary
120(1)
Nomenclature
120(2)
References
122(1)
5. INTRODUCTION TO LONGITUDINAL CONTROL
123(30)
5.1 Introduction
123(3)
5.1.1 Adaptive cruise control
124(1)
5.1.2 Collision avoidance
125(1)
5.1.3 Automated highway systems
125(1)
5.2 Benefits of Longitudinal Automation
126(2)
5.3 Cruise Control
128(2)
5.4 Upper Level Controller for Cruise Control
130(3)
5.5 Lower Level for Cruise Control
133(4)
5.5.1 Engine torque calculation for desired acceleration
134(3)
5.5.2 Engine control
137(1)
5.6 Anti-Lock Brake Systems
137(11)
5.6.1 Motivation
137(4)
5.6.2 ABS functions
141(1)
5.6.3 Deceleration threshold based algorithms
142(4)
5.6.4 Other logic based ABS control systems
146(2)
5.6.5 Recent research publications on ABS
148(1)
5.7
Chapter Summary
148(1)
Nomenclature
149(1)
References
150(3)
6. ADAPTIVE CRUISE CONTROL
153(34)
6.1 Introduction
153(2)
6.2 Vehicle Following Specifications
155(1)
6.3 Control Architecture
156(2)
6.4 String Stability
158(1)
6.5 Autonomous Control with Constant Spacing
159(3)
6.6 Autonomous Control with the Constant Time-Gap Policy
162(7)
6.6.1 String stability of the CTG spacing policy
164(3)
6.6.2 Typical delay values
167(2)
6.7 Transitional Trajectories
169(9)
6.7.1 The need for a transitional controller
169(3)
6.7.2 Transitional controller design through R — R diagrams
172(6)
6.8 Lower Level Controller
178(2)
6.9
Chapter Summary
180(1)
Nomenclature
180(1)
References
181(2)
Appendix 6.A
183(4)
7. LONGITUDINAL CONTROL FOR VEHICLE PLATOONS
187(34)
7.1 Automated Highway Systems
187(1)
7.2 Vehicle Control on Automated Highway Systems
188(1)
7.3 Longitudinal Control Architecture
189(2)
7.4 Vehicle Following Specifications
191(2)
7.5 Background on Norms of Signals and Systems
193(5)
7.5.1 Norms of signals
193(1)
7.5.2 System norms
194(1)
7.5.3 Use of system norms to study signal amplification
195(3)
7.6 Design Approach for Ensuring String Stability
198(2)
7.7 Constant Spacing with Autonomous Control
200(3)
7.8 Constant Spacing with Wireless Communication
203(3)
7.9 Experimental Results
206(2)
7.10 Lower Level Controller
208(1)
7.11 Adaptive Controller for Unknown Vehicle Parameters
209(5)
7.11.1 Redefined notation
209(2)
7.11.2 Adaptive controller
211(3)
7.12
Chapter Summary
214(1)
Nomenclature
215(1)
References
216(2)
Appendix 7.A
218(3)
8. ELECTRONIC STABILITY CONTROL
221(36)
8.1 Introduction
221(3)
8.1.1 The functioning of a stability control system
221(2)
8.1.2 Systems developed by automotive manufacturers
223(1)
8.1.3 Types of stability control systems
223(1)
8.2 Differential Braking Systems
224(16)
8.2.1 Vehicle model
224(5)
8.2.2 Control architecture
229(1)
8.2.3 Desired yaw rate
230(1)
8.2.4 Desired side-slip angle
231(2)
8.2.5 Upper bounded values of target yaw rate and slip angle
233(2)
8.2.6 Upper controller design
235(3)
8.2.7 Lower Controller design
238(2)
8.3 Steer-By-Wire Systems
240(7)
8.3.1 Introduction
240(1)
8.3.2 Choice of output for decoupling
241(3)
8.3.3 Controller design
244(3)
8.4 Independent All Wheel Drive Torque Distribution
247(4)
8.4.1 Traditional four wheel drive systems
247(1)
8.4.2 Torque transfer between left and right wheels
248(1)
8.4.3 Active control of torque transfer to all wheels
249(2)
8.5
Chapter Summary
251(1)
Nomeclature
252(3)
References
255(2)
9. MEAN VALUE MODELING OF SI AND DIESEL ENGINES
257(30)
9.1 SI Engine Model Using Parametric Equations
258(7)
9.1.1 Engine rotational dynamics
259(1)
9.1.2 Indicated combustion torque
260(1)
9.1.3 Friction and pumping losses
261(1)
9.1.4 Manifold pressure equation
262(1)
9.1.5 Outflow rate from intake manifold
263(1)
9.1.6 Inflow rate into intake manifold
263(2)
9.2 SI Engine Model Using Look-Up Maps
265(8)
9.2.1 Introduction to engine maps
266(4)
9.2.2 Second order engine model using engine maps
270(1)
9.2.3 First order engine model using engine maps
271(2)
9.3 Introduction to Turbocharged Diesel Engine Maps
273(1)
9.4 Mean Value Modeling of Turbocharged Diesel Engines
274(5)
9.4.1 Intake manifold dynamics
275(1)
9.4.2 Exhaust manifold dynamics
275(1)
9.4.3 Turbocharger dynamics
276(1)
9.4.4 Engine crankshaft dynamics
277(1)
9.4.5 Control system objectives
278(1)
9.5 Lower Level Controller with SI Engines
279(2)
9.6
Chapter Summary
281(1)
Nomenclature
282(2)
References
284(3)
10. DESIGN AND ANALYSIS OF PASSIVE AUTOMOTIVE SUSPENSIONS 287(38)
10.1 Introduction to Automotive Suspensions
287(6)
10.1.1 Full, half and quarter car suspension models
287(2)
10.1.2 Suspension functions
289(2)
10.1.3 Dependent and independent suspensions
291(2)
10.2 Modal Decoupling
293(2)
10.3 Performance Variables for a Quarter Car Suspension
295(2)
10.4 Natural Frequencies and Mode Shapes for the Quarter Car
297(2)
10.5 Approximate Transfer Functions Using Decoupling
299(6)
10.6 Analysis of Vibrations in the Sprung Mass Mode
305(2)
10.7 Analysis of Vibrations in the Unsprung Mass Mode
307(1)
10.8 Verification Using the Complete Quarter Model
308(7)
10.8.1 Verification of the influence of suspension stiffness
308(2)
10.8.2 Verification of the influence of suspension damping
310(3)
10.8.3 Verification of the influence of tire stiffness
313(2)
10.9 Half-Car and Full-Car Suspension Models
315(6)
10.10
Chapter Summary
321(1)
Nomenclature
322(1)
References
323(2)
11. ACTIVE AUTOMOTIVE SUSPENSIONS 325(32)
11.1 Introduction
325(3)
11.2 Active Control: Trade-Offs and Limitations
328(11)
11.2.1 Transfer functions of interest
328(1)
11.2.2 Use of the LQR Formulation and its relation to H2 Optimal Control
328(2)
11.2.3 LQR formulation for active suspension design
330(2)
11.2.4 Performance studies of the LQR controller
332(7)
11.3 Active System Asymptotes
339(2)
11.4 Invariant Points and Their Influence on the Suspension Problem
341(2)
11.5 Analysis of Trade-Offs Using Invariant Points
343(3)
11.5.1 Ride quality/road holding trade-offs
344(1)
11.5.2 Ride quality/rattle space trade-offs
345(1)
11.6 Conclusions on Achievable Active System Performance
346(2)
11.7 Performance of a Simple Velocity Feedback Controller
348(2)
11.8 Hydraulic Actuators for Active Suspensions
350(2)
11.9
Chapter Summary
352(1)
Nomenclature
353(1)
References
354(3)
12. SEMI-ACTIVE SUSPENSIONS 357(30)
12.1 Introduction
357(2)
12.2 Semi-Active Suspension Model
359(3)
12.3 Theoretical Results: Optimal Semi-Active Suspensions
362(7)
12.3.1 Problem formulation
362(2)
12.3.2 Problem definition
364(1)
12.3.3 Optimal solution with no constraints on damping
365(3)
12.3.4 Optimal solution in the presence of constraints
368(1)
12.4 Interpretation of the Optimal Semi-Active Control Law
369(3)
12.5 Simulation Results
372(3)
12.6 Calculation of Transfer Function Plots with Semi-Active Suspensions
375(3)
12.7 Performance of Semi-Active Suspension Systems
378(5)
12.7.1 Moderately weighted ride quality
378(2)
12.7.2 Sky hook damping
380(3)
12.8
Chapter Summary
383(1)
Nomenclature
383(1)
References
384(3)
13. LATERAL AND LONGITUDINAL TIRE FORCES 387(46)
13.1 Tire Forces
387(3)
13.2 Tire Structure
390(1)
13.3 Longitudinal Tire Force at Small Slip Ratios
391(4)
13.4 Lateral Tire Force at Small Slip Angles
395(3)
13.5 Introduction to the Magic Formula Tire Model
398(2)
13.6 Development of Lateral Tire Model for Uniform Normal Force Distribution
400(9)
13.6.1 Lateral forces at small slip angles
402(3)
13.6.2 Lateral forces at large slip angles
405(4)
13.7 Development of Lateral Tire Model for Parabolic Normal Pressure Distribution
409(8)
13.8 Combined Lateral and Longitudinal Tire Force Generation
417(4)
13.9 The Magic Formula Tire Model
421(4)
13.10 Dugoff's Tire Model
425(4)
13.10.1 Introduction
425(1)
13.10.2 Model equations
426(1)
13.10.3 Friction Circle Interpretation of Dugoff's Model
427(2)
13.11 Dynamic Tire Model
429(1)
13.12
Chapter Summary
430(1)
Nomenclature
430(2)
References
432(1)
14. TIRE-ROAD FRICTION MEASUREMENT ON HIGHWAY VEHICLES 433(34)
14.1 Introduction
433(5)
14.1.1 Definition of tire-road friction coefficient
433(1)
14.1.2 Benefits of tire-road friction estimation
434(1)
14.1.3 Review of results on tire-road friction coefficient estimation
435(1)
14.1.4 Review of results on slip-slope based approach to friction estimation
436(2)
14.2 Longitudinal Vehicle Dynamics and Tire Model for Friction Estimation
438(8)
14.2.1 Vehicle longitudinal dynamics
438(1)
14.2.2 Determination of the normal force
439(1)
14.2.3 Tire model
440(2)
14.2.4 Friction coefficient estimation for both traction and braking
442(4)
14.3 Summary of Longitudinal Friction identification Approach
446(1)
14.4 Identification Algorithm Design
447(4)
14.4.1 Recursive least-squares (RLS) identification
447(2)
14.4.2 RLS with gain switching
449(1)
14.4.3 Conditions for parameter updates
450(1)
14.5 Estimation of Accelerometer Bias
451(3)
14.6 Experimental Results
454(7)
14.6.1 System hardware and software
454(1)
14.6.2 Tests on dry concrete surface
455(2)
14.6.3 Tests on concrete surface with loose snow covering
457(2)
14.6.4 Tests on surface consisting of two different friction levels
459(1)
14.6.5 Hard braking test
460(1)
14.7
Chapter Summary
461(1)
Nomenclature
462(2)
References
464(3)
Index 467