Atnaujinkite slapukų nuostatas

El. knyga: Vehicle Powertrain Systems

(University of Sunderland), (Iran University of Science & Technology)
  • Formatas: PDF+DRM
  • Išleidimo metai: 18-Nov-2011
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119958369
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 18-Nov-2011
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119958369
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The powertrain is at the heart of vehicle design; the engine whether it is a conventional, hybrid or electric design provides the motive power, which is then managed and controlled through the transmission and final drive components. The overall powertrain system therefore defines the dynamic performance and character of the vehicle. The design of the powertrain has conventionally been tackled by analyzing each of the subsystems individually and the individual components, for example, engine, transmission and driveline have received considerable attention in textbooks over the past decades. The key theme of this book is to take a systems approach to look at the integration of the components so that the whole powertrain system meets the demands of overall energy efficiency and good drivability.

Vehicle Powertrain Systems provides a thorough description and analysis of all the powertrain components and then treats them together so that the overall performance of the vehicle can be understood and calculated. The text is well supported by practical problems and worked examples. Extensive use is made of the MATLAB(R)  software and many example programmes for vehicle calculations are provided in the text.

Key features:





Structured approach to explaining the fundamentals of powertrain engineering

Integration of powertrain components into overall vehicle design Emphasis on practical vehicle design issues Extensive use of practical problems and worked examples Provision of MATLAB(R) programmes for the reader to use in vehicle performance calculations

This comprehensive and integrated analysis of vehicle powertrain engineering provides an invaluable resource for undergraduate and postgraduate automotive engineering students and is a useful reference for practicing engineers in the vehicle industry
About the Authors xiii
Preface xv
List of Abbreviations
xvii
1 Vehicle Powertrain Concepts
1(12)
1.1 Powertrain Systems
1(4)
1.1.1 Systems Approach
1(1)
1.1.2 History
2(1)
1.1.3 Conventional Powertrains
3(1)
1.1.4 Hybrid Powertrains
3(2)
1.2 Powertrain Components
5(1)
1.2.1 Engine
5(1)
1.2.2 Transmission
5(1)
1.2.3 Vehicle Structure
5(1)
1.2.4 Systems Operation
6(1)
1.3 Vehicle Performance
6(2)
1.4 Driver Behaviour
8(1)
1.5 The Role of Modelling
9(1)
1.6 Aim of the Book
10(3)
Further Reading
11(1)
References
11(2)
2 Power Generation Characteristics of Internal Combustion Engines
13(102)
2.1 Introduction
13(1)
2.2 Engine Power Generation Principles
13(26)
2.2.1 Engine Operating Modes
14(2)
2.2.2 Engine Combustion Review
16(2)
2.2.3 Engine Thermodynamics Review
18(15)
2.2.4 Engine Output Characteristics
33(1)
2.2.5 Cylinder Pressure Variations
34(5)
2.3 Engine Modelling
39(31)
2.3.1 Engine Kinematics
40(9)
2.3.2 Engine Torque
49(9)
2.3.3 A Simplified Model
58(8)
2.3.4 The Flywheel
66(4)
2.4 Multi-cylinder Engines
70(10)
2.4.1 Firing Order
70(2)
2.4.2 Engine Torque
72(7)
2.4.3 Quasi-Steady Engine Torque
79(1)
2.5 Engine Torque Maps
80(11)
2.5.1 Engine Dynamometers
80(2)
2.5.2 Chassis Dynamometers
82(1)
2.5.3 Engine Torque-Speed Characteristics
83(8)
2.6 Magic Torque (MT) Formula for Engine Torque
91(3)
2.6.1 Converting Part Throttle Curves
91(1)
2.6.2 The MT Formula
92(1)
2.6.3 Interpretation
93(1)
2.7 Engine Management System
94(4)
2.7.1 Construction
94(1)
2.7.2 Sensors
95(1)
2.7.3 Maps and Look-up Tables
96(2)
2.7.4 Calibration
98(1)
2.8 Net Output Power
98(11)
2.8.1 Engine Mechanical Efficiency
99(1)
2.8.2 Accessory Drives
99(1)
2.8.3 Environmental Effects
100(9)
2.9 Conclusion
109(1)
2.10 Review Questions
109(1)
2.11 Problems
110(5)
Further Reading
112(1)
References
113(2)
3 Vehicle Longitudinal Dynamics
115(112)
3.1 Introduction
115(1)
3.2 Torque Generators
115(3)
3.2.1 Internal Combustion Engines
116(2)
3.2.2 Electric Motors
118(1)
3.3 Tractive Force
118(11)
3.3.1 Tyre Force Generation
119(3)
3.3.2 Mathematical Relations for Tractive Force
122(5)
3.3.3 Traction Diagrams
127(2)
3.4 Resistive Forces
129(12)
3.4.1 Rolling Resistance
129(5)
3.4.2 Vehicle Aerodynamics
134(4)
3.4.3 Slopes
138(1)
3.4.4 Resistance Force Diagrams
139(2)
3.4.5 Coast Down Test
141(1)
3.5 Vehicle Constant Power Performance (CPP)
141(20)
3.5.1 Maximum Power Delivery
141(1)
3.5.2 Continuous Gear-Ratio Assumption
142(2)
3.5.3 Governing Equations
144(3)
3.5.4 Closed Form Solution
147(3)
3.5.5 Numerical Solutions
150(2)
3.5.6 Power Requirements
152(3)
3.5.7 Time of Travel and Distance
155(4)
3.5.8 Maximum Speed
159(2)
3.6 Constant Torque Performance (CTP)
161(8)
3.6.1 Closed Form Solution
162(5)
3.6.2 Numerical Solutions
167(2)
3.7 Fixed Throttle Performance (FTP)
169(14)
3.7.1 Gearshift and Traction Force
170(2)
3.7.2 Acceleration, Speed and Distance
172(5)
3.7.3 Shift Times
177(1)
3.7.4 Maximum Speed at Each Gear
177(3)
3.7.5 Best Acceleration Performance
180(2)
3.7.6 Power Consumption
182(1)
3.8 Throttle Pedal Cycle Performance (PCP)
183(5)
3.9 Effect of Rotating Masses
188(7)
3.9.1 Corrections to Former Analyses
192(3)
3.10 Tyre Slip
195(2)
3.11 Performance on a Slope
197(6)
3.11.1 Constant Power Performance (CPP)
198(1)
3.11.2 Constant Torque Performance (CTP)
199(1)
3.11.3 Fixed Throttle (FT)
200(2)
3.11.4 Variable Slopes
202(1)
3.12 Vehicle Coast Down
203(7)
3.12.1 Constant Rolling Resistance
203(5)
3.12.2 Rolling Resistance as a Function of Speed
208(1)
3.12.3 Inertia of Rotating Masses
208(2)
3.13 Driveline Losses
210(6)
3.13.1 Component Efficiencies
210(5)
3.13.2 Torque Flow Direction
215(1)
3.13.3 Effect of Rolling Resistance
215(1)
3.14 Conclusion
216(1)
3.15 Review Questions
216(1)
3.16 Problems
217(10)
Further Reading
225(1)
References
226(1)
4 Transmissions
227(114)
4.1 Introduction
227(1)
4.2 The Need for a Gearbox
227(2)
4.3 Design of Gearbox Ratios
229(24)
4.3.1 Lowest Gear
229(6)
4.3.2 Highest Gear
235(8)
4.3.3 Intermediate Gears
243(9)
4.3.4 Other Influencing Factors
252(1)
4.4 Gearbox Kinematics and Tooth Numbers
253(10)
4.4.1 Normal Gears
255(3)
4.4.2 Epicyclic Gear Sets
258(5)
4.5 Manual Transmissions
263(51)
4.5.1 Construction and Operation
263(2)
4.5.2 Dry Clutches
265(11)
4.5.3 Diaphragm Springs
276(11)
4.5.4 Clutch Engagement Dynamics
287(27)
4.6 Automatic Transmissions
314(8)
4.6.1 Conventional Automatics
315(3)
4.6.2 AMTs
318(1)
4.6.3 DCTs
318(4)
4.7 CVTs
322(9)
4.7.1 Classification
324(1)
4.7.2 Friction CVTs
325(2)
4.7.3 Ratcheting CVTs
327(1)
4.7.4 Non-Mechanical CVTs
328(2)
4.7.5 Idling and Launch
330(1)
4.8 Conclusion
331(1)
4.9 Review Questions
331(1)
4.10 Problems
332(9)
Further Reading
339(1)
References
339(2)
5 Fuel Consumption
341(46)
5.1 Introduction
341(1)
5.2 Engine Energy Consumption
342(3)
5.2.1 BSFC Maps
342(2)
5.2.2 BSFC and Engine Efficiency
344(1)
5.3 Driving Cycles
345(6)
5.3.1 Typical Driving Cycles
346(2)
5.3.2 Calculations
348(2)
5.3.3 Vehicle Tests
350(1)
5.4 Vehicle Fuel Consumption
351(9)
5.4.1 Map-free Fuel Consumption
352(4)
5.4.2 Map-based Fuel Consumption
356(4)
5.4.3 Effect of Rotating Masses
360(1)
5.5 Shifting Effects
360(9)
5.5.1 Effect of Shifting on EOP
361(3)
5.5.2 Efficient Operating Points
364(5)
5.6 Software
369(2)
5.6.1 Solution Methodologies
369(1)
5.6.2 ADVISOR®
370(1)
5.7 Automated Gearshifts
371(3)
5.7.1 Engine State
371(1)
5.7.2 Driver's Intentions
371(1)
5.7.3 Combined Shifting
372(1)
5.7.4 Controller
372(1)
5.7.5 Multigear Transmission Concept
373(1)
5.8 Other Solutions for Fuel Efficiency
374(4)
5.8.1 Powertrain Component Improvements
374(1)
5.8.2 Lightweight Vehicles
375(1)
5.8.3 Engine
376(1)
5.8.4 Transmission
377(1)
5.9 Conclusion
378(1)
5.10 Review Questions
379(1)
5.11 Problems
379(8)
Further Reading
384(1)
References
384(3)
6 Driveline Dynamics
387(38)
6.1 Introduction
387(1)
6.2 Modelling Driveline Dynamics
387(4)
6.2.1 Modelling Methods
388(2)
6.2.2 Linear Versus Non-linear Models
390(1)
6.2.3 Software Use
390(1)
6.3 Bond Graph Models of Driveline Components
391(6)
6.3.1 The Engine
391(1)
6.3.2 The Clutch
392(1)
6.3.3 The Transmission
393(1)
6.3.4 Propeller and Drive Shafts
394(1)
6.3.5 The Differential
394(2)
6.3.6 The Wheel
396(1)
6.3.7 Vehicle
397(1)
6.4 Driveline Models
397(5)
6.4.1 Full Driveline Model
397(1)
6.4.2 Straight-Ahead Motion
397(1)
6.4.3 Rigid Body Model
397(2)
6.4.4 Driveline with Clutch Compliance
399(1)
6.4.5 Driveline with Driveshaft Compliance
400(1)
6.4.6 Driveline with Clutch and Driveshaft Compliances
401(1)
6.5 Analysis
402(16)
6.5.1 Effect of Clutch Compliance
403(5)
6.5.2 Effect of Driveshaft Compliance
408(3)
6.5.3 Effect of Clutch and Driveshaft Compliances
411(4)
6.5.4 Frequency Responses
415(3)
6.5.5 Improvements
418(1)
6.6 Conclusion
418(1)
6.7 Review Questions
419(1)
6.8 Problems
419(6)
Further Reading
423(1)
References
424(1)
7 Hybrid Electric Vehicles
425(86)
7.1 Introduction
425(1)
7.2 Types of Hybrid Electric Vehicles
425(8)
7.2.1 Basic Classification
426(2)
7.2.2 Basic Modes of Operation
428(1)
7.2.3 Other Derivatives
429(3)
7.2.4 Degree of Hybridization
432(1)
7.3 Power Split Devices
433(18)
7.3.1 Simple PSD
434(12)
7.3.2 EM Compound PSD
446(5)
7.4 HEV Component Characteristics
451(14)
7.4.1 The IC Engine
452(1)
7.4.2 Electric Machines
452(5)
7.4.3 The Battery
457(8)
7.5 HEV Performance Analysis
465(9)
7.5.1 Series HEV
466(4)
7.5.2 Parallel HEV
470(4)
7.6 HEV Component Sizing
474(26)
7.6.1 General Considerations
474(1)
7.6.2 Sizing for Performance
475(23)
7.6.3 Optimum Sizing
498(2)
7.7 Power Management
500(7)
7.7.1 Control Potential
501(5)
7.7.2 Control
506(1)
7.8 Conclusion
507(1)
7.9 Review Questions
507(1)
7.10 Problems
508(3)
Further Reading
510(1)
References
510(1)
Appendix: An Introduction to Bond Graph Modelling
511(18)
A.1 Basic Concept
511(1)
A.2 Standard Elements
511(6)
A.2.1 Sources
512(1)
A.2.2 Passive Elements
512(2)
A.2.3 Two Port Elements
514(2)
A.2.4 Junctions
516(1)
A.3 Constructing Bond Graphs
517(3)
A.4 Equations of Motion
520(9)
A.4.1 Causality
520(1)
A.4.2 Assignment Procedure
521(1)
A.4.3 Bond Graph Numbering
522(1)
A.4.4 Component Equations
523(1)
A.4.5 Bond Graph Simplifications
523(1)
A.4.6 Derivation of Equations of Motion
524(5)
Index 529
Behrooz Mashadi, Iran University of Science and Technology Dr Behrooz Mashhadi is an assistant professor in the Department of Automotive Engineering at Iran University of Science and Technology. His areas of expertise are vehicle powertrain systems and vehicle dynamics and control, and he has published widely in these fields in international research journals and conference publications.

David A Crolla, University of Sunderland David Crolla's activities are concentrated on engineering consultancy work, in particular specialised short courses and expert witness cases in automotive engineering. He also retains strong academic links with the Universities of Leeds, Cranfield and Sunderland. His specialism is in vehicle dynamics and control, and he has authored over 200 journal and conference papers in this subject area with particular topics of interest covering the ride, handling, safety, stability and braking of vehicles. He has worked extensively with industrial partners and applications have included passenger cars, land speed record vehicles, racing cars, SUVs, off-road vehicles and commercial vehicles. He is an Emeritus Professor of Automotive Engineering at the University of Leeds, and visiting Professor at the University of Sunderland. He is series editor for a textbook series on Automotive Engineering for Elsevier.