Preface |
|
xiii | |
Acknowledgments |
|
xv | |
List of Figures |
|
xvii | |
List of Tables |
|
xxxiii | |
List of Abbreviations |
|
xxxv | |
I Fundamentals |
|
1 | (102) |
|
1 Theory of Structural Vibration |
|
|
3 | (78) |
|
|
3 | (1) |
|
1.2 Vibrations without Damping |
|
|
3 | (9) |
|
1.2.1 Free Vibrations without Damping |
|
|
4 | (4) |
|
1.2.2 Forced Vibrations without Damping |
|
|
8 | (4) |
|
1.3 Vibrations with Damping |
|
|
12 | (6) |
|
1.3.1 Free Vibrations with Damping |
|
|
12 | (4) |
|
1.3.2 Forced Vibrations with Damping |
|
|
16 | (2) |
|
1.4 Frequency-Domain Methods |
|
|
18 | (12) |
|
|
19 | (3) |
|
|
22 | (2) |
|
1.4.3 Deformation Response Factor |
|
|
24 | (3) |
|
1.4.4 Fourier Transformation |
|
|
27 | (3) |
|
|
30 | (17) |
|
1.5.1 Interpolation of Excitation Method |
|
|
31 | (2) |
|
|
33 | (6) |
|
1.5.3 Central Difference Method |
|
|
39 | (5) |
|
1.5.4 Stability and Computational Error |
|
|
44 | (3) |
|
1.6 Multi-Degree-of-Freedom Systems |
|
|
47 | (9) |
|
1.6.1 Natural Frequencies and Modes |
|
|
49 | (3) |
|
|
52 | (1) |
|
1.6.3 Reduction of Degrees-of-Freedom |
|
|
52 | (4) |
|
1.6.3.1 Static Condensation |
|
|
52 | (1) |
|
1.6.3.2 Kinematic Constraints |
|
|
53 | (1) |
|
1.6.3.3 Rayleigh-Ritz Method |
|
|
53 | (3) |
|
|
56 | (6) |
|
1.7.1 Modal Analysis without Damping |
|
|
57 | (3) |
|
1.7.2 Modal Analysis with Damping |
|
|
60 | (2) |
|
|
62 | (10) |
|
1.8.1 Viscoelastic Behavior |
|
|
63 | (3) |
|
|
66 | (2) |
|
|
68 | (1) |
|
1.8.4 Construction of the Damping Matrix |
|
|
69 | (3) |
|
|
72 | (9) |
|
|
72 | (6) |
|
1.9.2 Central Difference Method |
|
|
78 | (3) |
|
2 Structural Control Systems |
|
|
81 | (6) |
|
|
81 | (1) |
|
|
81 | (2) |
|
|
83 | (4) |
|
|
83 | (1) |
|
|
84 | (1) |
|
2.3.3 Materials Incorporated in Control Devices |
|
|
84 | (3) |
|
3 Principles of Structural Control |
|
|
87 | (16) |
|
|
87 | (1) |
|
3.2 State-Space Representation |
|
|
88 | (5) |
|
3.3 Structural Control Algorithms |
|
|
93 | (12) |
|
|
93 | (2) |
|
3.3.2 Controller Algorithms |
|
|
95 | (24) |
|
3.3.2.1 On-Off Controller |
|
|
95 | (4) |
|
3.3.2.2 Fuzzy Logic Controller |
|
|
99 | (4) |
II Conventional Damping Systems |
|
103 | (40) |
|
|
105 | (14) |
|
|
105 | (1) |
|
|
106 | (3) |
|
|
109 | (3) |
|
|
112 | (4) |
|
4.5 Viscous Fluid Dampers |
|
|
116 | (3) |
|
|
119 | (24) |
|
|
119 | (1) |
|
5.2 Classical Tuned Mass Dampers |
|
|
119 | (26) |
|
5.2.1 Mathematical Modeling |
|
|
121 | (12) |
|
5.2.1.1 State-Space Representation |
|
|
122 | (3) |
|
5.2.1.2 Deformation Response Factor |
|
|
125 | (2) |
|
5.2.1.3 Parameter Optimization |
|
|
127 | (1) |
|
|
128 | (5) |
|
5.2.2 Pendulum Tuned Mass Dampers |
|
|
133 | (3) |
|
5.2.3 Tuned Liquid Dampers |
|
|
136 | (4) |
|
5.2.4 Tuned Liquid Column Dampers |
|
|
140 | (3) |
III Advanced Damping Systems |
|
143 | (178) |
|
6 Active and Semi-Active Damping Systems |
|
|
145 | (10) |
|
|
145 | (1) |
|
6.2 Active Damping Systems |
|
|
145 | (4) |
|
|
145 | (2) |
|
6.2.2 Application Examples |
|
|
147 | (2) |
|
6.3 Semi-Active Damping Systems |
|
|
149 | (6) |
|
|
149 | (1) |
|
6.3.2 Application Examples |
|
|
150 | (5) |
|
7 Semi-Active Tuned Liquid Column Dampers |
|
|
155 | (72) |
|
7.1 Semi-Active Uniaxial Tuned Liquid Column Damper |
|
|
155 | (33) |
|
7.1.1 Mathematical Modeling |
|
|
158 | (11) |
|
7.1.1.1 Equation of Motion of the S-TLCD |
|
|
159 | (5) |
|
|
164 | (1) |
|
7.1.1.3 Geometric Factors |
|
|
165 | (2) |
|
7.1.1.4 State-Space Representation |
|
|
167 | (2) |
|
7.1.2 Experimental Investigations |
|
|
169 | (19) |
|
7.1.2.1 Experimental Setup |
|
|
169 | (5) |
|
7.1.2.2 Investigations on the Natural Frequency |
|
|
174 | (3) |
|
7.1.2.3 Investigations on the Inherent Damping |
|
|
177 | (3) |
|
7.1.2.4 Investigations on the Vibration Control Performance |
|
|
180 | (8) |
|
7.2 Semi-Active Omnidirectional Tuned Liquid Column Damper |
|
|
188 | (32) |
|
7.2.1 Mathematical Modeling |
|
|
190 | (11) |
|
7.2.1.1 Equation of Motion of the Semi-Active O-TLCD |
|
|
190 | (5) |
|
7.2.1.2 Equation of Motion of an SDoF Structure with a Semi-Active O-TLCD |
|
|
195 | (2) |
|
7.2.1.3 Equation of Motion of an MDoF Structure with Multiple Semi-Active O-TLCDs |
|
|
197 | (3) |
|
7.2.1.4 State-Space Representation of an MDoF Structure with Multiple Semi-Active O-TLCDs |
|
|
200 | (1) |
|
7.2.2 Experimental Studies |
|
|
201 | (4) |
|
|
205 | (27) |
|
7.2.3.1 Study 1: Omnidirectional Control Capability |
|
|
205 | (6) |
|
7.2.3.2 Study 2: Semi-Active Control Capability |
|
|
211 | (9) |
|
|
220 | (7) |
|
8 Damping Systems Using Shape Memory Alloys |
|
|
227 | (66) |
|
|
227 | (1) |
|
|
228 | (2) |
|
8.3 Superelastic Material Behavior |
|
|
230 | (2) |
|
8.4 Mathematical Modeling |
|
|
232 | (11) |
|
8.4.1 Modeling of the Strain Rate Dependent Entropy Effect |
|
|
233 | (7) |
|
|
235 | (1) |
|
8.4.1.2 Strain Decomposition |
|
|
235 | (1) |
|
8.4.1.3 Free Energy Formulation |
|
|
236 | (1) |
|
8.4.1.4 Stress Definition |
|
|
236 | (1) |
|
|
236 | (1) |
|
|
237 | (1) |
|
8.4.1.7 Integration and Solution Algorithms |
|
|
238 | (1) |
|
8.4.1.8 Rate Dependent Formulation of Entropy Change |
|
|
239 | (1) |
|
8.4.2 Modeling of the Strain Rate Dependent Latent Heat Evolution |
|
|
240 | (3) |
|
|
240 | (1) |
|
8.4.2.2 Strain Decomposition |
|
|
241 | (1) |
|
8.4.2.3 Free Energy Formulation |
|
|
241 | (1) |
|
8.4.2.4 Stress Definition |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
8.4.2.7 Integration and Solution Algorithms |
|
|
242 | (1) |
|
8.4.2.8 Rate Dependent Formulation of Latent Heat Evolution |
|
|
242 | (1) |
|
|
243 | (13) |
|
|
243 | (4) |
|
8.5.2 Phenomenological Latent Heat Formulation |
|
|
247 | (1) |
|
8.5.3 Shaking Table Tests on a Frame Structure Incorporating SMA Wires |
|
|
248 | (8) |
|
|
256 | (14) |
|
8.6.1 SMA Wire Response Considering Entropy Effect |
|
|
256 | (3) |
|
8.6.2 SMA Wire Response Considering Latent Heat Evolution |
|
|
259 | (1) |
|
8.6.3 Response of a Frame Structure Incorporating SMA Wires |
|
|
260 | (10) |
|
8.6.3.1 Study 1: Harmonic Response |
|
|
264 | (1) |
|
8.6.3.2 Study 2: Seismic Response |
|
|
265 | (5) |
|
8.7 Real-Time Hybrid Simulations |
|
|
270 | (19) |
|
8.7.1 Governing Equations |
|
|
272 | (3) |
|
8.7.1.1 Equations of Motion |
|
|
272 | (3) |
|
8.7.1.2 State-space Representation |
|
|
275 | (1) |
|
8.7.2 Numerical Simulation Part |
|
|
275 | (5) |
|
8.7.2.1 Numerical Modeling |
|
|
275 | (1) |
|
8.7.2.2 Time Integration Methods |
|
|
276 | (1) |
|
8.7.2.3 Delay Compensation |
|
|
277 | (3) |
|
8.7.3 Physical Testing Part |
|
|
280 | (1) |
|
8.7.4 Response of a Frame Structure Incorporating SMA Wires Considering Soil-Structure Interaction |
|
|
281 | (24) |
|
8.7.4.1 Numerical Simulation Part |
|
|
282 | (1) |
|
8.7.4.2 Physical Simulation Part |
|
|
283 | (1) |
|
8.7.4.3 Results and Discussion |
|
|
283 | (6) |
|
|
289 | (4) |
|
|
293 | (28) |
|
|
293 | (1) |
|
9.2 System Identification Methods |
|
|
293 | (3) |
|
|
296 | (1) |
|
9.4 Unscented KALMAN Filter |
|
|
297 | (4) |
|
9.5 Adaptive Joint State-Parameter Observer |
|
|
301 | (4) |
|
|
305 | (12) |
|
|
306 | (2) |
|
9.6.2 Simulation Parameters and Load Cases |
|
|
308 | (2) |
|
9.6.3 Study 1: Threshold Value |
|
|
310 | (1) |
|
9.6.4 Study 2: Localization |
|
|
311 | (3) |
|
9.6.5 Study 3: State Covariance |
|
|
314 | (1) |
|
9.6.6 Study 4: System Noise Covariance and Discretization Order |
|
|
315 | (2) |
|
|
317 | (4) |
A MATLAB Codes of Examples |
|
321 | (12) |
|
A.1 Example 1.1: Responses of SDoF systems without damping |
|
|
321 | (1) |
|
A.2 Example 1.3: Responses of SDoF systems with damping |
|
|
322 | (1) |
|
A.3 Example 1.6: Newmark's integration method |
|
|
323 | (2) |
|
A.4 Example 1.7: Central difference method |
|
|
325 | (1) |
|
A.5 Example 1.9: Modal analysis method |
|
|
326 | (2) |
|
A.6 Example 1.11: Construction of the damping matrix |
|
|
328 | (1) |
|
A.7 Example 1.12: Nonlinear vibrations |
|
|
329 | (4) |
Bibliography |
|
333 | (28) |
Index |
|
361 | |