Atnaujinkite slapukų nuostatas

El. knyga: Vibration Mitigation Systems in Structural Engineering

(Center for Wind and Earthquake Engineering, Chair of Structural Analysis and Dynamics, Faculty of Civil Engineering RWTH Aachen University, Germany)
  • Formatas: 390 pages
  • Išleidimo metai: 15-Aug-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351347600
Kitos knygos pagal šią temą:
  • Formatas: 390 pages
  • Išleidimo metai: 15-Aug-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351347600
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The scope of the book is the application of vibration mitigation systems in structural engineering. The content includes the theoretical background covering aspects from structural dynamics and control engineering. Passive, active and semi-active devices will be explained giving mathematical principles, designs and application examples.

The scope of the book is the application of vibration mitigation systems in structural engineering. The intended content includes the theoretical background covering aspects from both structural dynamics and control engineering point of view. Moreover, passive, active and semi-active devices are explained in detail giving mathematical principles, design considerations and application examples. It also contains detailed information about structural monitoring, as an essential part of the active/semi-active systems, and therefore, provide a full overview about passive, active and semi-active systems in the specific context of civil engineering

  • Book presents a comprehensive coverage of the area of vibration control of civil structures subjected to different types of loading while using passive, semi-active, and/or active controls.
  • Presents the theoretical governing equations as well as the associated design guides of various vibration control mitigation approaches.
  • Discusses structural monitoring aspects such as sensor technology, system identification and signal processing topics.
  • Reviews structural control aspects, such as algorithms.
  • Includes solved examples utilizing MATLAB®/SIMULINK® with source codes of the calculation examples and design tool set.

This book is aimed at graduate students, professionals, researchers in civil engineering, structural engineering, structural dynamics, health monitoring, vibration control.

Preface xiii
Acknowledgments xv
List of Figures xvii
List of Tables xxxiii
List of Abbreviations xxxv
I Fundamentals 1(102)
1 Theory of Structural Vibration
3(78)
1.1 Introduction
3(1)
1.2 Vibrations without Damping
3(9)
1.2.1 Free Vibrations without Damping
4(4)
1.2.2 Forced Vibrations without Damping
8(4)
1.3 Vibrations with Damping
12(6)
1.3.1 Free Vibrations with Damping
12(4)
1.3.2 Forced Vibrations with Damping
16(2)
1.4 Frequency-Domain Methods
18(12)
1.4.1 Transfer Function
19(3)
1.4.2 Filtering
22(2)
1.4.3 Deformation Response Factor
24(3)
1.4.4 Fourier Transformation
27(3)
1.5 Time-Domain Methods
30(17)
1.5.1 Interpolation of Excitation Method
31(2)
1.5.2 Newmark's Method
33(6)
1.5.3 Central Difference Method
39(5)
1.5.4 Stability and Computational Error
44(3)
1.6 Multi-Degree-of-Freedom Systems
47(9)
1.6.1 Natural Frequencies and Modes
49(3)
1.6.2 Discretization
52(1)
1.6.3 Reduction of Degrees-of-Freedom
52(4)
1.6.3.1 Static Condensation
52(1)
1.6.3.2 Kinematic Constraints
53(1)
1.6.3.3 Rayleigh-Ritz Method
53(3)
1.7 Modal Analysis
56(6)
1.7.1 Modal Analysis without Damping
57(3)
1.7.2 Modal Analysis with Damping
60(2)
1.8 Damping Models
62(10)
1.8.1 Viscoelastic Behavior
63(3)
1.8.2 Hysteretic Damping
66(2)
1.8.3 Coulomb Damping
68(1)
1.8.4 Construction of the Damping Matrix
69(3)
1.9 Nonlinear Vibrations
72(9)
1.9.1 Newmark's Method
72(6)
1.9.2 Central Difference Method
78(3)
2 Structural Control Systems
81(6)
2.1 Introduction
81(1)
2.2 Background
81(2)
2.3 Classification
83(4)
2.3.1 Control Devices
83(1)
2.3.2 Control Strategies
84(1)
2.3.3 Materials Incorporated in Control Devices
84(3)
3 Principles of Structural Control
87(16)
3.1 Introduction
87(1)
3.2 State-Space Representation
88(5)
3.3 Structural Control Algorithms
93(12)
3.3.1 Operation Modes
93(2)
3.3.2 Controller Algorithms
95(24)
3.3.2.1 On-Off Controller
95(4)
3.3.2.2 Fuzzy Logic Controller
99(4)
II Conventional Damping Systems 103(40)
4 Dissipators
105(14)
4.1 Introduction
105(1)
4.2 Metallic Dampers
106(3)
4.3 Friction Dampers
109(3)
4.4 Viscoelastic Dampers
112(4)
4.5 Viscous Fluid Dampers
116(3)
5 Tuned Mass Dampers
119(24)
5.1 Introduction
119(1)
5.2 Classical Tuned Mass Dampers
119(26)
5.2.1 Mathematical Modeling
121(12)
5.2.1.1 State-Space Representation
122(3)
5.2.1.2 Deformation Response Factor
125(2)
5.2.1.3 Parameter Optimization
127(1)
5.2.1.4 Mass Ratio
128(5)
5.2.2 Pendulum Tuned Mass Dampers
133(3)
5.2.3 Tuned Liquid Dampers
136(4)
5.2.4 Tuned Liquid Column Dampers
140(3)
III Advanced Damping Systems 143(178)
6 Active and Semi-Active Damping Systems
145(10)
6.1 Introduction
145(1)
6.2 Active Damping Systems
145(4)
6.2.1 Description
145(2)
6.2.2 Application Examples
147(2)
6.3 Semi-Active Damping Systems
149(6)
6.3.1 Description
149(1)
6.3.2 Application Examples
150(5)
7 Semi-Active Tuned Liquid Column Dampers
155(72)
7.1 Semi-Active Uniaxial Tuned Liquid Column Damper
155(33)
7.1.1 Mathematical Modeling
158(11)
7.1.1.1 Equation of Motion of the S-TLCD
159(5)
7.1.1.2 Restoring Force
164(1)
7.1.1.3 Geometric Factors
165(2)
7.1.1.4 State-Space Representation
167(2)
7.1.2 Experimental Investigations
169(19)
7.1.2.1 Experimental Setup
169(5)
7.1.2.2 Investigations on the Natural Frequency
174(3)
7.1.2.3 Investigations on the Inherent Damping
177(3)
7.1.2.4 Investigations on the Vibration Control Performance
180(8)
7.2 Semi-Active Omnidirectional Tuned Liquid Column Damper
188(32)
7.2.1 Mathematical Modeling
190(11)
7.2.1.1 Equation of Motion of the Semi-Active O-TLCD
190(5)
7.2.1.2 Equation of Motion of an SDoF Structure with a Semi-Active O-TLCD
195(2)
7.2.1.3 Equation of Motion of an MDoF Structure with Multiple Semi-Active O-TLCDs
197(3)
7.2.1.4 State-Space Representation of an MDoF Structure with Multiple Semi-Active O-TLCDs
200(1)
7.2.2 Experimental Studies
201(4)
7.2.3 Numerical Studies
205(27)
7.2.3.1 Study 1: Omnidirectional Control Capability
205(6)
7.2.3.2 Study 2: Semi-Active Control Capability
211(9)
7.3 Conclusion
220(7)
8 Damping Systems Using Shape Memory Alloys
227(66)
8.1 Introduction
227(1)
8.2 Application Examples
228(2)
8.3 Superelastic Material Behavior
230(2)
8.4 Mathematical Modeling
232(11)
8.4.1 Modeling of the Strain Rate Dependent Entropy Effect
233(7)
8.4.1.1 Elastic Modulus
235(1)
8.4.1.2 Strain Decomposition
235(1)
8.4.1.3 Free Energy Formulation
236(1)
8.4.1.4 Stress Definition
236(1)
8.4.1.5 Heat Equation
236(1)
8.4.1.6 Kinetic Rules
237(1)
8.4.1.7 Integration and Solution Algorithms
238(1)
8.4.1.8 Rate Dependent Formulation of Entropy Change
239(1)
8.4.2 Modeling of the Strain Rate Dependent Latent Heat Evolution
240(3)
8.4.2.1 Elastic Modulus
240(1)
8.4.2.2 Strain Decomposition
241(1)
8.4.2.3 Free Energy Formulation
241(1)
8.4.2.4 Stress Definition
241(1)
8.4.2.5 Heat Equation
241(1)
8.4.2.6 Kinetic Rules
242(1)
8.4.2.7 Integration and Solution Algorithms
242(1)
8.4.2.8 Rate Dependent Formulation of Latent Heat Evolution
242(1)
8.5 Experimental Studies
243(13)
8.5.1 Entropy Effects
243(4)
8.5.2 Phenomenological Latent Heat Formulation
247(1)
8.5.3 Shaking Table Tests on a Frame Structure Incorporating SMA Wires
248(8)
8.6 Numerical Studies
256(14)
8.6.1 SMA Wire Response Considering Entropy Effect
256(3)
8.6.2 SMA Wire Response Considering Latent Heat Evolution
259(1)
8.6.3 Response of a Frame Structure Incorporating SMA Wires
260(10)
8.6.3.1 Study 1: Harmonic Response
264(1)
8.6.3.2 Study 2: Seismic Response
265(5)
8.7 Real-Time Hybrid Simulations
270(19)
8.7.1 Governing Equations
272(3)
8.7.1.1 Equations of Motion
272(3)
8.7.1.2 State-space Representation
275(1)
8.7.2 Numerical Simulation Part
275(5)
8.7.2.1 Numerical Modeling
275(1)
8.7.2.2 Time Integration Methods
276(1)
8.7.2.3 Delay Compensation
277(3)
8.7.3 Physical Testing Part
280(1)
8.7.4 Response of a Frame Structure Incorporating SMA Wires Considering Soil-Structure Interaction
281(24)
8.7.4.1 Numerical Simulation Part
282(1)
8.7.4.2 Physical Simulation Part
283(1)
8.7.4.3 Results and Discussion
283(6)
8.8 Conclusion
289(4)
9 System Identification
293(28)
9.1 Introduction
293(1)
9.2 System Identification Methods
293(3)
9.3 KALMAN Filter
296(1)
9.4 Unscented KALMAN Filter
297(4)
9.5 Adaptive Joint State-Parameter Observer
301(4)
9.6 Parametric Studies
305(12)
9.6.1 System Modeling
306(2)
9.6.2 Simulation Parameters and Load Cases
308(2)
9.6.3 Study 1: Threshold Value
310(1)
9.6.4 Study 2: Localization
311(3)
9.6.5 Study 3: State Covariance
314(1)
9.6.6 Study 4: System Noise Covariance and Discretization Order
315(2)
9.7 Conclusion
317(4)
A MATLAB Codes of Examples 321(12)
A.1 Example 1.1: Responses of SDoF systems without damping
321(1)
A.2 Example 1.3: Responses of SDoF systems with damping
322(1)
A.3 Example 1.6: Newmark's integration method
323(2)
A.4 Example 1.7: Central difference method
325(1)
A.5 Example 1.9: Modal analysis method
326(2)
A.6 Example 1.11: Construction of the damping matrix
328(1)
A.7 Example 1.12: Nonlinear vibrations
329(4)
Bibliography 333(28)
Index 361
Altay Okyay is currently the chief executive officer of the RWTH Aachen University research center, CWE-Center for Wind and Earthquake Engineering. He is also the senior engineer of the Chair of Structural Analysis and Dynamics (LBB-Lehrstuhl für Baustatik und Baudynamik) in the Faculty of Civil Engineering at RWTH. Dr. Altay completed his diploma studies at the RWTH Aachen University and written his thesis in LBB researching the earthquake performance and structural control of highway bridges. After graduating from RWTH Aachen University in 2007, Dr. Altay started his carrier in a civil engineering research company in Vienna in the field of vibration control. There, he developed and developed damping systems for buildings, railway bridges and footbridges. During a research project, he also applied a tuned liquid column damper system for ropeway cars. In 2010, he returned to Aachen and started his academic carrier as a research assistant in LBB. In 2013, Dr. Altay finished his doctoral studies with distinction developing a semi-active tuned liquid column damper (S-TLCD), which is patented by RWTH. His current research interests include semi-active and active damping systems, and structural damping applications using smart materials, such as shape memory alloys and piezoelectric ceramic materials. He is lecturing at RWTH undergraduate and graduate students Structural Dynamics, Structural Control and Health Monitoring and Dynamics, and supervising dissertations in these fields.