Atnaujinkite slapukų nuostatas

El. knyga: Viscoelastic Materials

(University of Wisconsin, Madison)
  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Apr-2009
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9780511577376
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Apr-2009
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9780511577376
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This graduate text on viscoelastic materials addresses design applications as diverse as earplugs, computer disks and medical diagnostics.

Understanding viscoelasticity is pertinent to design applications as diverse as earplugs, gaskets, computer disks, satellite stability, medical diagnosis, injury prevention, vibration abatement, tire performance, sports, spacecraft explosions, and music. This book fits a one-semester graduate course on the properties, analysis, and uses of viscoelastic materials. Those familiar with the author's precursor book, Viscoelastic Solids, will see that this book contains many updates and expanded coverage of the materials science, causes of viscoelastic behavior, properties of materials of biological origin, and applications of viscoelastic materials. The theoretical presentation includes both transient and dynamic aspects, with emphasis on linear viscoelasticity to develop physical insight. Methods for the solution of stress analysis problems are developed and illustrated. Experimental methods for characterization of viscoelastic materials are explored in detail. Viscoelastic phenomena are described for a wide variety of materials, including viscoelastic composite materials. Applications of viscoelasticity and viscoelastic materials are illustrated with case studies.

Daugiau informacijos

This graduate text on viscoelastic materials addresses design applications as diverse as earplugs, computer disks and medical diagnostics.
Preface xvii
Introduction: Phenomena
1(13)
Viscoelastic Phenomena
1(2)
Motivations for Studying Viscoelasticity
3(1)
Transient Properties: Creep and Relaxation
3(5)
Viscoelastic Functions J(t), E(t)
3(4)
Solids and Liquids
7(1)
Dynamic Response to Sinusoidal Load: E*, tanδ
8(2)
Demonstration of Viscoelastic Behavior
10(1)
Historical Aspects
10(1)
Summary
11(1)
Examples
11(1)
Problems
12(1)
Bibliography
12(2)
Constitutive Relations
14(41)
Introduction
14(1)
Prediction of the Response of Linearly Viscoelastic Materials
14(3)
Prediction of Recovery from Relaxation E(t)
14(1)
Prediction of Response to Arbitrary Strain History
15(2)
Restrictions on the Viscoelastic Functions
17(2)
Roles of Energy and Passivity
17(1)
Fading Memory
18(1)
Relation between Creep and Relaxation
19(1)
Analysis by Laplace Transforms: J(t) ⇔ E(t)
19(1)
Analysis by Direct Construction: J(t) ⇔ E(t)
20(1)
Stress versus Strain for Constant Strain Rate
20(1)
Particular Creep and Relaxation Functions
21(9)
Exponentials and Mechanical Models
21(5)
Exponentials and Internal Causal Variables
26(1)
Fractional Derivatives
27(1)
Power-Law Behavior
28(1)
Stretched Exponential
29(1)
Logarithmic Creep; Kuhn Model
29(1)
Distinguishing among Viscoelastic Functions
30(1)
Effect of Temperature
30(3)
Three-Dimensional Linear Constitutive Equation
33(2)
Aging Materials
35(1)
Dielectric and Other Forms of Relaxation
35(1)
Adaptive and ``Smart'' Materials
36(1)
Effect of Nonlinearity
37(6)
Constitutive Equations
37(3)
Creep-Relaxation Interrelation: Nonlinear
40(3)
Summary
43(1)
Examples
43(8)
Problems
51(1)
Bibliography
52(3)
Dynamic Behavior
55(36)
Introduction and Rationale
55(1)
The Linear Dynamic Response Functions E*, tanδ
56(7)
Response to Sinusoidal Input
57(2)
Dynamic Stress-Strain Relation
59(3)
Standard Linear Solid
62(1)
Kramers-Kronig Relations
63(2)
Energy Storage and Dissipation
65(2)
Resonance of Structural Members
67(7)
Resonance, Lumped System
67(4)
Resonance, Distributed System
71(3)
Decay of Resonant Vibration
74(3)
Wave Propagation and Attenuation
77(2)
Measures of Damping
79(1)
Nonlinear Materials
79(2)
Summary
81(1)
Examples
81(7)
Problems
88(1)
Bibliography
89(2)
Conceptual Structure of Linear Viscoelasticity
91(20)
Introduction
91(1)
Spectra in Linear Viscoelasticity
92(3)
Definitions H, L and Exact Interrelations
92(1)
Particular Spectra
93(2)
Approximate Interrelations of Viscoelastic Functions
95(6)
Interrelations Involving the Spectra
95(3)
Interrelations Involving Measurable Functions
98(3)
Summary, Approximate Relations
101(1)
Conceptual Organization of the Viscoelastic Functions
101(3)
Summary
104(1)
Examples
104(5)
Problems
109(1)
Bibliography
109(2)
Viscoelastic Stress and Deformation Analysis
111(34)
Introduction
111(1)
Three-Dimensional Constitutive Equation
111(1)
Pure Bending by Direct Construction
112(2)
Correspondence Principle
114(2)
Pure Bending by Correspondence
116(1)
Correspondence Principle in Three Dimensions
116(5)
Constitutive Equations
116(1)
Rigid Indenter on a Semi-Infinite Solid
117(2)
Viscoelastic Rod Held at Constant Extension
119(1)
Stress Concentration
119(1)
Saint Venant's Principle
120(1)
Poisson's Ratio v(t)
121(3)
Relaxation in Tension
121(2)
Creep in Tension
123(1)
Dynamic Problems: Effects of Inertia
124(7)
Longitudinal Vibration and Waves in a Rod
124(1)
Torsional Waves and Vibration in a Rod
125(3)
Bending Waves and Vibration
128(1)
Waves in Three Dimensions
129(2)
Noncorrespondence Problems
131(2)
Solution by Direct Construction: Example
131(1)
A Generalized Correspondence Principle
132(1)
Contact Problems
132(1)
Bending in Nonlinear Viscoelasticity
133(1)
Summary
134(1)
Examples
134(8)
Problems
142(1)
Bibliography
142(3)
Experimental Methods
145(62)
Introduction and General Requirements
145(1)
Creep
146(4)
Creep: Simple Methods to Obtain J(t)
146(1)
Effect of Risetime in Transient Tests
146(2)
Creep in Anisotropic Media
148(1)
Creep in Nonlinear Media
148(2)
Inference of Moduli
150(2)
Use of Analytical Solutions
150(1)
Compression of a Block
151(1)
Displacement and Strain Measurement
152(4)
Force Measurement
156(1)
Load Application
157(1)
Environmental Control
157(1)
Subresonant Dynamic Methods
158(3)
Phase Determination
158(2)
Nonlinear Materials
160(1)
Rebound Test
161(1)
Resonance Methods
161(10)
General Principles
161(2)
Particular Resonance Methods
163(3)
Methods for Low-Loss or High-Loss Materials
166(2)
Resonant Ultrasound Spectroscopy
168(3)
Achieving a Wide Range of Time or Frequency
171(2)
Rationale
171(1)
Multiple Instruments and Long Creep
172(1)
Time-Temperature Superposition
172(1)
Test Instruments for Viscoelasticity
173(11)
Servohydraulic Test Machines
173(1)
A Relaxation Instrument
174(1)
Driven Torsion Pendulum Devices
174(4)
Commercial Viscoelastic Instrumentation
178(1)
Instruments for a Wide Range of Time and Frequency
179(3)
Fluctuation-Dissipation Relation
182(1)
Mapping Properties by Indentation
183(1)
Wave Methods
184(4)
Summary
188(1)
Examples
188(12)
Problems
200(1)
Bibliography
201(6)
Viscoelastic Properties of Materials
207(64)
Introduction
207(1)
Rationale
207(1)
Overview: Some Common Materials
207(1)
Polymers
208(7)
Shear and Extension in Amorphous Polymers
208(4)
Bulk Relaxation in Amorphous Polymers
212(1)
Crystalline Polymers
213(1)
Aging and other Relaxations
214(1)
Piezoelectric Polymers
214(1)
Asphalt
214(1)
Metals
215(12)
Linear Regime of Metals
215(2)
Nonlinear Regime of Metals
217(2)
High-Damping Metals and Alloys
219(5)
Creep-Resistant Alloys
224(1)
Semiconductors and Amorphous Elements
225(1)
Semiconductors and Acoustic Amplification
226(1)
Nanoscale Properties
226(1)
Ceramics
227(6)
Rocks
227(2)
Concrete
229(2)
Inorganic Glassy Materials
231(1)
Ice
231(1)
Piezoelectric Ceramics
232(1)
Biological Composite Materials
233(20)
Constitutive Equations
234(1)
Hard Tissue: Bone
234(2)
Collagen, Elastin, Proteoglycans
236(1)
Ligament and Tendon
237(3)
Muscle
240(3)
Fat
243(1)
Brain
243(1)
Vocal Folds
244(1)
Cartilage and Joints
244(2)
Kidney and Liver
246(1)
Uterus and Cervix
246(1)
Arteries
247(1)
Lung
248(1)
The Ear
248(1)
The Eye
249(2)
Tissue Comparison
251(1)
Plant Seeds
252(1)
Wood
252(1)
Soft Plant Tissue: Apple, Potato
253(1)
Common Aspects
253(2)
Temperature Dependence
253(1)
High-Temperature Background
254(1)
Negative Damping and Acoustic Emission
255(1)
Summary
255(1)
Examples
255(1)
Problems
256(1)
Bibliography
257(14)
Causal Mechanisms
271(70)
Introduction
271(3)
Rationale
271(1)
Survey of Viscoelastic Mechanisms
271(2)
Coupled Fields
273(1)
Thermoelastic Relaxation
274(6)
Thermoelasticity in One Dimension
274(1)
Thermoelasticity in Three Dimensions
275(1)
Thermoelastic Relaxation Kinetics
276(2)
Heterogeneity and Thermoelastic Damping
278(2)
Material Properties and Thermoelastic Damping
280(1)
Relaxation by Stress-Induced Fluid Motion
280(6)
Fluid Motion in One Dimension
280(1)
Biot Theory: Fluid Motion in Three Dimensions
281(5)
Relaxation by Molecular Rearrangement
286(6)
Glassy Region
286(1)
Transition Region
287(2)
Rubbery Behavior
289(2)
Crystalline Polymers
291(1)
Biological Macromolecules
292(1)
Polymers and Metals
292(1)
Relaxation by Interface Motion
292(2)
Grain Boundary Slip in Metals
292(2)
Interface Motion in Composites
294(1)
Structural Interface Motion
294(1)
Relaxation Processes in Crystalline Materials
294(22)
Snoek Relaxation: Interstitial Atoms
294(4)
Zener Relaxation in Alloys: Pairs of Atoms
298(1)
Gorsky Relaxation
299(1)
Granato-Lucke Relaxation: Dislocations
300(3)
Bordoni Relaxation: Dislocation Kinks
303(2)
Relaxation Due to Phase Transformations
305(9)
High-Temperature Background
314(1)
Nonremovable Relaxations
315(1)
Damping Due to Wave Scattering
316(1)
Magnetic and Piezoelectric Materials
316(6)
Relaxation in Magnetic Media
316(2)
Relaxation in Piezoelectric Materials
318(4)
Nonexponential Relaxation
322(1)
Concepts for Material Design
323(4)
Multiple Causes: Deformation Mechanism Maps
323(3)
Damping Mechanisms in High-Loss Alloys
326(1)
Creep Mechanisms in Creep-Resistant Alloys
326(1)
Relaxation at Very Long Times
327(1)
Summary
327(1)
Examples
328(4)
Problems and Questions
332(1)
Bibliography
332(9)
Viscoelastic Composite Materials
341(36)
Introduction
341(1)
Composite Structures and Properties
341(3)
Ideal Structures
341(1)
Anisotropy due to Structure
342(2)
Prediction of Elastic and Viscoelastic Properties
344(9)
Basic Structures: Correspondence Solutions
344(1)
Voigt Composite
345(1)
Reuss Composite
345(1)
Hashin-Shtrikman Composite
346(1)
Spherical Particulate Inclusions
347(2)
Fiber Inclusions
349(1)
Platelet Inclusions
349(1)
Stiffness-Loss Maps
350(3)
Bounds on the Viscoelastic Properties
353(1)
Extremal Composites
354(2)
Biological Composite Materials
356(1)
Poisson's Ratio of Viscoelastic Composites
357(1)
Particulate and Fibrous Composite Materials
358(5)
Structure
358(1)
Particulate Polymer Matrix Composites
359(2)
Fibrous Polymer Matrix Composites
361(1)
Metal-Matrix Composites
362(1)
Cellular Solids
363(3)
Piezoelectric Composites
366(1)
Dispersion of Waves in Composites
366(1)
Summary
367(1)
Examples
367(3)
Problems
370(1)
Bibliography
370(7)
Applications and Case Studies
377(64)
Introduction
377(1)
A Viscoelastic Earplug: Use of Recovery
377(1)
Creep and Relaxation of Materials and Structures
378(13)
Concrete
378(1)
Wood
378(1)
Power Lines
379(1)
Glass Sag: Flowing Window Panes
380(1)
Indentation: Road Rutting
380(1)
Leather
381(1)
Creep-Resistant Alloys and Turbine Blades
381(1)
Loosening of Bolts and Screws
382(2)
Computer Disk Drive: Case Study of Relaxation
384(1)
Earth, Rock, and Ice
385(1)
Solder
386(1)
Filaments in Light Bulbs and Other Devices
387(1)
Tires: Flat-Spotting and Swelling
388(1)
Cushions for Seats and Wheelchairs
388(1)
Artificial Joints
389(1)
Dental Fillings
389(1)
Food Products
389(1)
Seals and Gaskets
390(1)
Relaxation in Musical Instrument Strings
390(1)
Winding of Tape
391(1)
Creep and Recovery in Human Tissue
391(3)
Spinal Discs: Height Change
391(1)
The Nose
392(1)
Skin
392(1)
The Head
393(1)
Creep Damage and Creep Rupture
394(1)
Vajont Slide
394(1)
Collapse of a Tunnel Segment
394(1)
Vibration Control and Waves
394(13)
Analysis of Vibration Transmission
394(3)
Resonant (Tuned) Damping
397(1)
Rotating Equipment Vibration
397(1)
Large Structure Vibration: Bridges and Buildings
398(1)
Damping Layers for Plate and Beam Vibration
399(1)
Structural Damping Materials
400(2)
Piezoelectric Transducers
402(1)
Aircraft Noise and Vibration
402(2)
Solid Fuel Rocket Vibration
404(1)
Sports Equipment Vibration
404(1)
Seat Cushions and Automobiles: Protection of People
404(2)
Vibration in Scientific Instruments
406(1)
Waves
406(1)
``Smart'' Materials and Structures
407(2)
``Smart'' Materials
407(1)
Shape Memory Materials
408(1)
Self-Healing Materials
409(1)
Piezoelectric Solid Damping
409(1)
Active Vibration Control: ``Smart'' Structures
409(1)
Rolling Friction
409(3)
Rolling Analysis
410(1)
Rolling of Tires
411(1)
Uses of Low-Loss Materials
412(2)
Timepieces
412(1)
Frequency Stabilization and Control
413(1)
Gravitational Measurements
413(1)
Nanoscale Resonators
414(1)
Impulses, Rebound, and Impact Absorption
414(7)
Rationale
414(1)
Analysis
415(3)
Bumpers and Pads
418(1)
Shoe Insoles, Athletic Tracks, and Glove Liners
419(1)
Toughness of Materials
419(1)
Tissue Viscoelasticity in Medical Diagnosis
420(1)
Rebound of a Ball
421(3)
Analysis
421(1)
Applications in Sports
422(2)
Applications of Soft Materials
424(1)
Viscoelastic Gels in Surgery
424(1)
Hand Strength Exerciser
424(1)
Viscoelastic Toys
424(1)
No-Slip Flooring, Mats, and Shoe Soles
425(1)
Applications Involving Thermoviscoelasticity
425(1)
Satellite Dynamics and Stability
426(2)
Summary
428(1)
Examples
429(2)
Problems
431(1)
Bibliography
431(10)
A: Appendix
441(14)
A.1 Mathematical Preliminaries
441(4)
A.1.1 Introduction
441(1)
A.1.2 Functionals and Distributions
441(1)
A.1.3 Heaviside Unit Step Function
442(1)
A.1.4 Dirac Delta
442(1)
A.1.5 Doublet
443(2)
A.1.6 Gamma Function
445(1)
A.1.7 Liebnitz Rule
445(1)
A.2 Transforms
445(3)
A.2.1 Laplace Transform
446(1)
A.2.2 Fourier Transform
446(1)
A.2.3 Hartley Transform
447(1)
A.2.4 Hilbert Transform
447(1)
A.3 Laplace Transform Properties
448(1)
A.4 Convolutions
449(2)
A.5 Interrelations in Elasticity Theory
451(1)
A.6 Other Works on Viscoelasticity
451(1)
Bibliography
452(3)
B: Symbols
455(2)
B.1 Principal Symbols
455(2)
Index 457
Roderic Lakes is a Distinguished Professor in the Department of Engineering Physics at the University of WisconsinMadison. He is a Fellow in the American Association for the Advancement of Science (AAAS) and a Fellow in the American Society of Mechanical Engineers (ASME). He has won numerous teaching awards and is the author and co-author of more than 194 archival publications, three books, including Viscoelastic Solids and Biomaterials (2nd and 3rd editions, with J. B. Park), and fourteen book chapters. The author's articles in Science and Nature are of particular note as they have led to numerous synergistic publications in a variety of disciplines.