Atnaujinkite slapukų nuostatas

El. knyga: In-Vitro and In-Vivo Tools in Drug Delivery Research for Optimum Clinical Outcomes

Edited by (The Maharaja Sayajirao University of Baroda, India), Edited by (Dubai Pharmacy College, United Arab Emirates)
  • Formatas: 350 pages
  • Išleidimo metai: 22-Jun-2018
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351368728
  • Formatas: 350 pages
  • Išleidimo metai: 22-Jun-2018
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351368728

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book covers the essentials of drug delivery research and provides a unique forum for scientific experimental methods that are exclusively focused by the in-vitro, ex-vivo, and in-vivo methodologies of drug delivery research and felicitates translational research. The book includes recent and novel approaches in evaluation methods of transdermal, nasal, ocular, oral and intraoral, gastro-retentive, colon-targeted, and brain-targeted drug delivery systems. Providing up to date and comprehensive information, this text is invaluable to students, teachers, scientists, and others employed in the field of drug delivery.

Preface vii
List of Abbreviations ix
Editors xiii
Contributors xv
1 In-Vitro and In-Vivo Tools in Emerging Drug Delivery Scenario: Challenges and Updates 1(24)
Hemal Tandel
Priyanka Bhatt
Keerti Jain
Aliasgar Shahiwala
Ambikanandan Misra
1.1 Introduction
2(1)
1.2 In-Vitro and In-Vivo Assessment: Why Is It Needed Particularly for NDDS?
3(3)
1.2.1 Challenges-In-Vitro Studies
4(2)
1.2.1.1 Particle Size, Zeta Potential and Stability
4(1)
1.2.1.2 Dissolution/Release Studies
5(1)
1.2.2 Challenges-In-Vivo Studies
6(1)
1.3 In-Vitro Characterization of NDDS
6(9)
1.3.1 Product Quality Attributes
7(3)
1.3.1.1 Complexes
7(1)
1.3.1.2 Conjugates
8(1)
1.3.1.3 Encapsulated Systems
8(1)
1.3.1.4 Lipid-Based Systems
9(1)
1.3.2 Product Performance Attributes
10(18)
1.3.2.1 In-Vitro Drug Release Studies
10(1)
1.3.2.2 Hemolytic Assay
11(1)
1.3.2.3 Electrolyte Stability Study
11(1)
1.3.2.4 Cell Culture Studies
12(1)
1.3.2.5 Cellular Uptake and Cell Binding Studies
12(1)
1.3.2.6 In-Vitro Cytotoxicity Studies
13(1)
1.3.2.7 Oxidative Stress
14(1)
1.3.2.8 Apoptosis and Mitochondrial Dysfunction
14(1)
1.4 In-Vivo Performance Evaluation of NDDS
15(2)
1.5 Regulatory Guidance
17(1)
1.6 Conclusions
18(1)
References
19(6)
2 Intraoral and Peroral Drug Delivery Systems 25(26)
Mohammed Shuaib Khan
Pranav J. Shah
Priya B. Dubey
Jaimini K. Gandhi
2.1 Introduction
26(2)
2.2 Evaluation of Intraoral Drug Delivery Systems
28(8)
2.2.1 Evaluation of Taste Masking
28(1)
2.2.2 In-Vitro Mucoadhesion Tests
29(1)
2.2.3 In-Vitro Dissolution Testing of Intraoral Dosage Forms
29(5)
2.2.3.1 Dissolution of Sublingual Tablets
29(1)
2.2.3.2 Dissolution of Chewing Gum
30(3)
2.2.3.3 Dissolution of Buccal Patches
33(1)
2.2.3.4 Dissolution of Buccal Films
33(1)
2.2.3.5 Dissolution of Lozenges
33(1)
2.2.3.6 Dissolution of Buccal Mucoadhesive Tablets
33(1)
2.2.4 In-Vitro Drug Permeation Studies
34(1)
2.2.5 In-Vivo Methods
35(1)
2.2.5.1 Residence Time
35(1)
2.2.5.2 Buccal Absorption Test
35(1)
2.3 Models for Assessing Intestinal Permeability
36(6)
2.3.1 In-Vitro Methods
37(1)
2.3.1.1 Flow-Through Diffusion Cells
37(1)
2.3.2 In Situ Models
38(3)
2.3.2.1 Intestinal Perfusion
39(1)
2.3.2.2 Intestinal Loop Method
40(1)
2.3.2.3 Intestinal Vascular Cannulation
40(1)
2.3.3 In-Vivo Methods
41(11)
2.3.3.1 Use of X-Ray
41(1)
2.3.3.2 Use of Gamma Scintigraphy
41(1)
2.3.3.3 Use of Pharmacoscintigraphy
41(1)
2.3.3.4 In-Vivo Imaging Systems
42(1)
2.4 In-Vitro-In-Vivo Correlations
42(2)
References
44(7)
3 Transdermal Drug Delivery Systems 51(28)
Anuj Garg
Sanjay Singh
3.1 Introduction
52(4)
3.1.1 Skin Structure: Anatomy, Physiology and Barrier Functions
53(1)
3.1.2 Principles and Different Routes of Penetration Across the Skin
54(2)
3.1.2.1 Transepidermal Route
55(1)
3.1.2.2 Transfollicular Routes
55(1)
3.2 Factors Affecting Permeation Across the Skin
56(1)
3.2.1 Physiochemical Factors of Permeant
56(1)
3.2.2 Formulation Factors
56(1)
3.2.3 Physiological Factors
56(1)
3.3 Methods to Enhance Skin Permeability
57(6)
3.3.1 Passive Methods
57(1)
3.3.2 Active Methods
58(5)
3.3.2.1 Iontophoresis
58(3)
3.3.2.2 Electroporation
61(1)
3.3.2.3 Sonophoresis and Phonophoresis
62(1)
3.3.2.4 Magnetophoresis
62(1)
3.3.2.5 Thermophoresis
62(1)
3.3.2.6 Skin Abrasion
62(1)
3.4 Experimental Methods to Assess Skin Permeability
63(8)
3.4.1 In-Vitro Methods
63(5)
3.4.1.1 Different Parameters for Assessing the Transport or Permeation Across the Skin
63(1)
3.4.1.2 Diffusion Cells
64(2)
3.4.1.3 Different Type of Membrane
66(1)
3.4.1.4 Integrity Testing of Membrane
67(1)
3.4.2 Ex Vivo Methods
68(1)
3.4.2.1 Tape Stripping Methods
68(1)
3.4.2.2 Confocal Scanning Laser Microscopic Techniques
68(1)
3.4.3 In-Vivo Methods
69(1)
3.4.3.1 Microdialysis
69(1)
3.4.3.2 Plasma Concentration Time Profile after Transdermal Delivery (Pharmacokinetic)
70(1)
3.4.3.3 Pharmacodynamic Activity Relationship
70(1)
3.4.4 In Silico Methods (Software-Based Prediction of Permeation for Transdermal Delivery)
70(1)
3.5 Skin Sensitization and Irritation Studies
71(2)
3.5.1 Evaluation of Skin Sensitization and Irritation
71(2)
3.6 Emerging Technologies for Transdermal Drug Delivery
73(1)
3.6.1 Microneedle-Based Transdermal Drug Delivery
73(1)
3.6.2 Feedback-Controlled Transdermal Drug Delivery
74(1)
References
74(5)
4 Nasal and Pulmonary Drug Delivery Systems 79(56)
Pranav Ponkshe
Ruchi Amit Thakkar
Tarul Mulay
Rohit Joshi
Ankit Javia
Jitendra Amrutiya
Mahavir Chougule
4.1 Introduction
80(1)
4.2 Anatomy and Physiology of the Respiratory Tract
81(3)
4.3 Anatomy and Physiology of the Nasal Mucosa
84(1)
4.4 Challenges and Desired Target Site for Drug Deposition
85(4)
4.4.1 Challenges and Desired Target Site for Drug Deposition from Nasal Delivery
85(2)
4.4.1.1 Mucociliary Clearance
85(1)
4.4.1.2 Enzymatic Activity
86(1)
4.4.1.3 Characteristic of the Drug Molecules
86(1)
4.4.2 Challenges and Desired Target Site for Drug Deposition for Pulmonary Delivery
87(2)
4.4.2.1 Mucociliary Clearance
87(1)
4.4.2.2 Macrophage Uptake and Alveolar Clearance
88(1)
4.5 Approaches to Overcome Challenges in Drug Delivery
89(4)
4.5.1 Approaches to Overcome Challenges in Nasal Delivery
89(3)
4.5.1.1 Absorption Promoters/Absorption Modulators
89(1)
4.5.1.2 Nanotechnology-Based Carriers
90(1)
4.5.1.3 Prodrug Approach and Structural Modifications
91(1)
4.5.2 Approaches to Overcome Challenges in Pulmonary Drug Delivery
92(1)
4.5.2.1 Aerodynamic Particle Size
92(1)
4.5.2.2 Limiting the Lung Clearance Process
93(1)
4.6 Particle Deposition Mechanism and Factors Affecting Nasal and Pulmonary Drug Delivery
93(2)
4.6.1 Impaction
94(1)
4.6.2 Sedimentation
94(1)
4.6.3 Interception
94(1)
4.6.4 Diffusion
95(1)
4.7 Formulation Considerations
95(4)
4.7.1 Nasal Formulation Considerations
95(1)
4.7.2 Novel Pulmonary Drug Delivery Formulation Considerations
95(4)
4.7.2.1 Micelles
96(1)
4.7.2.2 Liposomes
97(1)
4.7.2.3 Micro and Nanoparticulate Polymeric Systems
97(1)
4.7.2.4 Supermagnetic Nanoparticles
98(1)
4.7.2.5 Nanosuspensions
99(1)
4.8 Manufacturing Methods for the Formulation of Nasal and Pulmonary Drug Delivery Systems
99(5)
4.8.1 Spray Drying
100(1)
4.8.2 Spray-Freeze-Drying (SFD)
101(1)
4.8.3 Supercritical Fluid (SCF) Technology
101(1)
4.8.4 Solvent Precipitation Method
102(1)
4.8.4.1 Sonocrystallization
102(1)
4.8.5 Emulsification/Solvent Evaporation
102(1)
4.8.6 Particle Replication in a Nonwetting Template (PRINT)
103(1)
4.9 In-Vitro, In-Vivo and Ex Vivo Delivery: Considerations and Approaches
104(12)
4.9.1 Nasal Drug Delivery
104(2)
4.9.1.1 Cell Culture Models
104(1)
4.9.1.2 Ex Vivo Permeation Models for Nasal Drug Delivery
105(1)
4.9.1.3 In-Vivo Animal Models for Nasal Drug Delivery
106(1)
4.9.2 Pulmonary Drug Delivery
106(12)
4.9.2.1 In-Vitro Pulmonary Epithelial Cell Models
106(4)
4.9.2.2 In-Vitro Drug Release Studies
110(3)
4.9.2.3 Ex Vivo Lung Tissue Models
113(1)
4.9.2.4 In-Vivo Animal Models
114(2)
4.10 In-Vitro-In-Vivo Correlations for Pulmonary Drug Delivery
116(2)
4.11 Chemistry, Manufacturing, and Controls Consideration for Scale-Up
118(2)
4.11.1 Toxicological Studies
118(1)
4.11.2 PK-PD Considerations
118(1)
4.11.3 Setting up QTPP
119(1)
4.12 Summary
120(1)
Acknowledgments
121(1)
References
121(14)
5 Ocular Drug Delivery Systems 135(38)
Shubhini A. Saraf
Jovita Kanoujia
Samipta Singh
Shailendra K. Saraf
5.1 Introduction
137(1)
5.2 General Evaluation Parameters
137(3)
5.2.1 Sterility Testing
137(1)
5.2.2 Stability Studies
138(1)
5.2.3 Evaluation of Rate and Extent of Delivery in Different Segments of Eye
138(2)
5.2.3.1 In-Vitro Release Study
138(1)
5.2.3.2 In-Vitro Permeation Study
139(1)
5.2.3.3 In-Vitro Cell Culture Models
139(1)
5.3 Overview of Conventional ODD Systems
140(2)
5.3.1 Ophthalmic Solutions and Suspensions
140(1)
5.3.1.1 Characterization of Ophthalmic Solutions and Suspensions
141(1)
5.3.2 Ointments and Emulsions
141(1)
5.3.2.1 Characterization of Ophthalmic Ointments and Emulsions
142(1)
5.4 Novel Ocular Drug Delivery Systems
142(6)
5.4.1 In Situ Gelling Systems
142(1)
5.4.1.1 Characterization of In Situ Gelling Systems
142(1)
5.4.2 Mucoadhesive Gels
143(1)
5.4.2.1 Characterization of Mucoadhesive Gels
144(1)
5.4.3 Contact Lens
144(1)
5.4.3.1 Characterization of Contact Lenses
145(1)
5.4.4 Implants
145(1)
5.4.4.1 Characterization of Implants
145(1)
5.4.5 Microneedles
146(1)
5.4.5.1 Characterization of Microneedles
146(1)
5.4.6 Ocular Inserts
147(1)
5.4.6.1 Characterization of Ocular Inserts
147(1)
5.4.7 Collagen Shields, Gels, Hydrogels, and Sponges
147(1)
5.4.7.1 Characterization of Collagen Shields, Gels, Hydrogels, Sponges
147(1)
5.5 Nanosystem-Based Ocular Drug Delivery
148(4)
5.5.1 Liposomes and Niosomes
148(1)
5.5.1.1 Characterization of Vesicular Drug Delivery Systems (Liposomes/Niosomes)
148(1)
5.5.2 Microemulsion and Nanoemulsions
149(1)
5.5.2.1 Characterization of Micro/Nanoemulsions
149(1)
5.5.3 Nanosuspensions
150(1)
5.5.3.1 Characterization of Nanosuspensions
150(1)
5.5.4 Nanoparticles and Polymeric Micelles
151(1)
5.5.4.1 Characterization of Particulate Systems (Nanoparticles/Polymeric Micelles)
151(1)
5.5.5 Dendrimers
152(1)
5.5.5.1 Characterization of Dendrimers
152(1)
5.6 Safety and Toxicity Evaluation: In-Vitro, In-Vivo and Ex Vivo Methods
152(2)
5.6.1 In-Vitro Tests
153(1)
5.6.2 In-Vivo Tests
153(1)
5.6.2.1 In-Vivo Draize Eye Test
153(1)
5.6.2.2 In-Vivo Low-Volume Eye Irritation Test
153(1)
5.7 In-Vivo and Ex Vivo Evaluation of Intraocular Parameters
154(8)
5.7.1 Study of Corneal Penetration Process
154(1)
5.7.2 Intraocular Pressure
154(1)
5.7.2.1 Acute Measurement of Intraocular Pressure
154(1)
5.7.3 Aqueous Humor Flow Rate
155(1)
5.7.4 Experimental Glaucoma
155(1)
5.7.5 Local Anesthesia of the Cornea
156(1)
5.7.6 Models of Eye Inflammation
156(5)
5.7.6.1 Allergic Conjunctivitis Model
156(1)
5.7.6.2 Corneal Inflammation Models
157(1)
5.7.6.3 Autoimmune Uveitis
158(1)
5.7.6.4 Endotoxin-Induced Uveitis Model
158(1)
5.7.6.5 UV-Induced Uveitis
158(1)
5.7.6.6 Ocular Inflammation Induced by Paracentesis
159(1)
5.7.6.7 Ocular Inflammation by Lens Proteins
159(1)
5.7.6.8 Proliferative Vitreoretinopathy in Rabbits
160(1)
5.7.7 In-Vivo Confocal Microscopy
161(1)
5.7.8 Ex Vivo and In-Vitro Tests Recommended by Federal Agencies
161(13)
5.7.8.1 Isolated/Enucleated Organ/Organotypic Methods
161(1)
5.7.8.2 Enucleated Eye Tests
162(1)
5.7.8.3 Non-Ocular Organotypic Models
162(1)
Conclusion
162(1)
References
163(10)
6 Gastroretentive Drug Delivery Systems 173(36)
Bhupinder Singh
Hetal P. Thakkar
Sanjay Bansal
Sumant Saini
Meena Bansal
Praveen K. Srivastava
6.1 Introduction
174(3)
6.1.1 Anatomy and Physiology of the Stomach
175(1)
6.1.2 Physicochemical Factors
176(1)
6.1.2.1 pKa of the Drug
176(1)
6.1.2.2 Solubility
176(1)
6.1.2.3 Stability
177(1)
6.1.2.4 Enzymatic Degradation
177(1)
6.1.3 Physiological Factors
177(1)
6.1.3.1 Mechanism of Absorption
177(1)
6.1.3.2 Microbial Degradation
177(1)
6.1.4 Biochemical Factors
177(1)
6.2 Concept and Significance of Gastroretention
177(14)
6.2.1 Suitable Drug Candidates for Gastroretention
179(1)
6.2.2 Various Strategies for Achieving Gastroretention
179(7)
6.2.2.1 Floating Drug Delivery Systems
179(3)
6.2.2.2 Noneffervescent Systems
182(1)
6.2.2.3 Low Density Due to Swelling
182(1)
6.2.2.4 Inherent Low-Density Systems
183(1)
6.2.2.5 Intragastric Osmotically Controlled DDS
184(1)
6.2.2.6 Effervescent Systems
185(1)
6.2.2.7 Limitations of FDDS
186(1)
6.2.3 High-Density Systems
186(1)
6.2.4 Bioadhesive Drug Delivery Systems
187(2)
6.2.4.1 Advantages of Bioadhesives
187(1)
6.2.4.2 Disadvantages of Bioadhesives
188(1)
6.2.5 Floating Bioadhesive Systems
189(1)
6.2.6 Size-Increasing (Expandable) Systems
189(2)
6.2.6.1 Systems Unfolding in the Stomach
189(1)
6.2.6.2 Systems Expanding Due to Swellable Excipients
190(1)
6.2.7 Miscellaneous
191(1)
6.2.7.1 Incorporation of Passage-Delaying Agents
191(1)
6.2.7.2 Magnetic Systems
191(1)
6.3 Patented Technologies for Gastroretentive Drug Delivery Systems
191(1)
6.4 Characterization of Gastroretentive Dosage Forms
191(10)
6.4.1 Challenges Faced/Anticipated in Characterization of Gastroretentive Dosage Forms
191(3)
6.4.2 In-Vitro Characterization and Gastroretention Study
194(2)
6.4.2.1 Floating Capacity (Buoyancy) Study
194(1)
6.4.2.2 Mucoadhesion Study
194(1)
6.4.2.3 Swelling Index
195(1)
6.4.2.4 Density of the Dosage Form
195(1)
6.4.2.5 In-Vitro Drug Release
195(1)
6.4.3 Bioavailability or Bioequivalence Studies
196(1)
6.4.3.1 In-Vivo Pharmacokinetics
196(1)
6.4.3.2 Pharmacokinetic Modeling and Simulation
197(1)
6.4.4 In-Vivo Visualization/Assessment of Gastroretention
197(15)
6.4.4.1 Gamma Scintigraphy
198(1)
6.4.4.2 Roentgenography
199(1)
6.4.4.3 Magnetic Marker Monitoring
200(1)
6.4.4.4 Gastroscopy
200(1)
6.4.4.5 Ultrasonography
201(1)
6.4.4.6 13C Octanoic Acid Breath Test (13C-OBT)
201(1)
6.5 Conclusion
201(1)
References
202(7)
7 Colon Targeted Drug Delivery Systems 209(28)
Naazneen Surti
7.1 Introduction
209(1)
7.2 Limitations and Challenges of Colonic Delivery
210(1)
7.3 Strategies for Targeting the Colon
211(1)
7.4 In-Vitro Evaluation
212(13)
7.4.1 Dosage Form-Related Evaluation
212(1)
7.4.2 Drug Release Studies In-Vitro Dissolution Test
212(8)
7.4.2.1 Conventional Dissolution Methods
214(2)
7.4.2.2 In-Vitro Fermentation Studies
216(4)
7.4.2.3 Isolated Bacterial Cultures
220(1)
7.4.3 Tests for Bioadhesion
220(3)
7.4.4 Cell Line Studies: In-Vitro Permeability, Toxicity Evaluation and Adhesion Studies
223(2)
7.4.5 Miscellaneous Studies
225(1)
7.5 In-Vivo Assessment Techniques
225(4)
7.5.1 Animal Models
225(2)
7.5.2 γ-Scintigraphy
227(2)
7.6 In Silico Models
229(1)
7.7 Future Perspectives
230(1)
References
231(6)
8 Brain Targeted Drug Delivery Systems 237(46)
Manisha Lalan
Rohan Lalani
Vivek Patel
Ambikanandan Misra
8.1 Introduction
238(1)
8.2 Blood-Brain Barrier
238(8)
8.2.1 Nature of Barrier
239(2)
8.2.2 Strategies to Overcome the BBB
241(5)
8.2.2.1 Increasing the Permeability or Influx of Drugs Across the BBB
243(1)
8.2.2.2 Disruption of BBB
244(2)
8.3 In-Vitro Studies
246(13)
8.3.1 Isolated Brain Capillaries
247(1)
8.3.2 Static Models
247(4)
8.3.2.1 Monoculture Models
247(1)
8.3.2.2 Coculture Models
248(1)
8.3.2.3 Cell Lines
249(1)
8.3.2.4 Human Stem Cell-Derived Models
250(1)
8.3.3 Dynamic Models
251(1)
8.3.4 Epithelial Cell Lines
252(1)
8.3.5 Parallel Artificial Membrane Permeability Assay
252(1)
8.3.6 Immobilized Artificial Membranes
253(1)
8.3.7 Optimization of Cell-Based Models
253(1)
8.3.8 Neurotoxicity Assessment
253(3)
8.3.8.1 Subcellular Systems
254(1)
8.3.8.2 Cellular Systems
255(1)
8.3.9 In Silico Studies
256(3)
8.4 In-Vivo Evaluation of Brain-Targeting Methodologies
259(10)
8.4.1 Pharmacokinetic Studies
259(9)
8.4.1.1 Invasive Techniques
260(6)
8.4.1.2 Non-Invasive Techniques
266(2)
8.4.2 In-Vivo Biodistribution by Radioisotopes
268(1)
8.4.3 Pharmacodynamic Approach
268(1)
8.4.4 Capillary Depletion Studies
269(1)
8.5 Anticipated Challenges and Future Perspectives
269(2)
References
271(12)
9 Parenteral Drug Delivery Systems 283(36)
Aliagsar Shahiwala
Tejal A. Mehta
Munira M. Momin
9.1 Parenteral Drug Delivery Systems
283(1)
9.2 Controlled-Release Drug Delivery Systems
284(10)
9.2.1 In-Vitro Drug Release Studies for Controlled Drug Delivery Systems
285(6)
9.2.1.1 Compendial Dissolution Methods
285(1)
9.2.1.2 Custom-Design Methods
286(5)
9.2.2 In Situ Methods
291(1)
9.2.2.1 Accelerated In-Vitro Release Testing
291(1)
9.2.3 Implications of In-Vitro Release Testing
292(1)
9.2.4 In-Vivo Studies for Controlled Drug Delivery Systems
293(1)
9.2.5 In-Vitro-In-Vivo Correlations (IVIVC)
294(1)
9.3 Targeted Drug Delivery Systems
294(9)
9.3.1 Surface Morphology
299(1)
9.3.2 Size and Size Distribution
300(1)
9.3.3 Surface Charge
300(1)
9.3.4 Entrapment/Drug Loading Efficiency
301(1)
9.3.5 Drug Release Studies
301(1)
9.3.6 Biodistribution Studies
302(1)
References
303(16)
Appendix: Characterization Parameter and Common Characterization Tools 319(4)
Index 323
Ambikanandan Misra is currently Professor of Pharmacy at Faculty of Pharmacy and former Dean, Faculty of Technology & Engineering (August 2011 to December 2015), and Head, Department of Pharmacy (July 2003- October 2008) at The Maharaja Sayajirao University of Baroda, India. He has been associated with the field of pharmaceutical sciences in industries and academics for more than 38 years. He is advisor to pharmaceutical, biotechnology and food and cosmetics industries.

With more than 15 years of teaching and research experience, Aliasgar Shahiwala is a Professor in the Department of Pharmaceutics and Graduate Program Director at Dubai Pharmacy College. Prof. Shahiwala received his Masters and Doctorate in pharmaceutics and pharmaceutical technology from The Maharaja Sayajirao University of Baroda, India, with high research output in the area of novel drug delivery. His postdoctoral research at Northeastern University, USA was specifically focused on applications of nanotechnology in the field of drug delivery and drug targeting. Prof. Shahiwala has published several international publications in high impact peer reviewed journals, 4 book chapters with internationally renowned publishers, and 1 patent. He is an editor of the book entitled Applications of Polymers in Drug Delivery published by Smithers Rapra Technology, a UK-based publisher. Prof. Shahiwalas research credentials have established him as a reviewer, a member of editorial board, a speaker, and an invited author for various pharmaceutical scientific journals and conferences. Prof. Shahiwala also has more than 3 years of rich research experience in the Formulation & Development Division of large-scale manufacturers of pharmaceuticals in India as an added technical expertise in his field.