Atnaujinkite slapukų nuostatas

El. knyga: Volume of Vector Fields on Riemannian Manifolds: Main Results and Open Problems

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2336
  • Išleidimo metai: 31-Jul-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031368578
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2336
  • Išleidimo metai: 31-Jul-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031368578

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defining minimal submanifolds, and on the existence and characterization of volume minimizers, it includes proofs of the most significant results obtained since the subjects introduction in 1986. Aiming to inspire further research, it also highlights a selection of intriguing open problems, and exhibits some previously unpublished results. The presentation is direct and deviates substantially from the usual approaches found in the literature, requiring a significant revision of definitions, statements, and proofs.





A wide range of topics is covered, including: a discussion on the conditions for a vector field on a Riemannian manifold to determine a minimal submanifold within its tangent bundle with the Sasaki metric; numerous examples of minimal vector fields (including those of constant length on punctured spheres); athorough analysis of Hopf vector fields on odd-dimensional spheres and their quotients; and a description of volume-minimizing vector fields of constant length on spherical space forms of dimension three.





Each chapter concludes with an up-to-date survey which offers supplementary information and provides valuable insights into the material, enhancing the reader's understanding of the subject. Requiring a solid understanding of the fundamental concepts of Riemannian geometry, the book will be useful for researchers and PhD students with an interest in geometric analysis.

Recenzijos

The monograph under review provides a quite complete survey of up-to-date results on the minimality of vector fields on odd-dimensional spheres and more general Riemannian manifolds. Besides, it can be recommended as a self-consistent textbook introducing the reader to modern techniques for studying the extrinsic geometry of vector fields. the monograph includes a lot of intriguing open questions and conjectures which may serve as a novel source of inspiration for further researches . (Vasyl Gorkaviy, zbMATH 1536.53003, 2024)

-
1. Introduction. - 2. Minimal Sections of Tensor Bundles. - 3. Minimal
Vector Fields of Constant Length on the Odd-Dimensional Spheres. -
4. Vector
Fields of Constant Length of Minimum Volume on the Odd-Dimensional Spherical
Space Forms. - 5. Vector Fields of Constant Length on Punctured Spheres.
Olga Gil-Medrano (1956, Spain) is a retired Full Professor at the University of Valencia, Spain. A leading specialist in the study of vector field volumes on Riemannian manifolds, her research also includes other topics of geometric analysis, such as the geometrical theory of foliations, the Yamabe problem, the geometry of spaces of metrics and other sections of tensor bundles, and variational problems on these spaces.  She received the Medal of the Royal Spanish Mathematical Society (RSME) in 2021.