Atnaujinkite slapukų nuostatas

El. knyga: Wastewater Management for Coastal Cities: The Ocean Disposal Option

  • Formatas: PDF+DRM
  • Serija: Environmental Engineering S.
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642797293
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Environmental Engineering S.
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642797293
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Protection of coastal waters from direct pollution by coastal cities is a vital task in preserving marine ecosystems and promoting human health. This text addresses the ecological and oceanographic fundamentals that are essential for an understanding of what happens to wastes discharged into the nearshore marine environment. It explains the requirements for rational engineering design and operation of the physical and institutional components of coastal wastewater management, and it provides guidelines for hydraulic design, ocean outfall construction, monitoring, cost recovery, and other economic aspects. Case studies are included.
1 Overview
1(4)
2 Oceanography at the Margin
5(50)
2.1 The Physical, Geological, and Chemical Framework
5(26)
2.1.1 Oceanic Waters
5(3)
2.1.2 Coastal Waters
8(1)
2.1.3 Waves, Tides, and Sea Level
9(11)
2.1.4 Marine Geology and Sedimentation
20(4)
2.1.5 Chemistry of Seawater and Suspended Sediments
24(3)
2.1.6 Stirring and Mixing
27(1)
2.1.7 Bays, Estuaries, and Straits
28(3)
2.2 The Living Sea
31(10)
2.2.1 Ecological Relationships and Trophic Levels
33(1)
2.2.2 Marine Productivity
34(1)
2.2.3 Plankton
35(1)
2.2.4 Nekton
35(1)
2.2.5 Bacteria
36(1)
2.2.6 Benthos
36(3)
2.2.7 Fisheries
39(2)
2.3 Special Topics
41(7)
2.3.1 Public Health Aspects
41(1)
2.3.2 Environmental Toxicity
42(5)
2.3.3 Wave and Current Measurements
47(1)
2.3.4 A Historical Note on Biological Oceanography
47(1)
2.4 References
48(7)
3 Ecological Design
55(24)
3.1 Public Health
55(11)
3.1.1 Marine Recreational Water
58(7)
3.1.2 Shellfish and Finfish
65(1)
3.2 Design for Marine Ecosystems
66(6)
3.2.1 Eutrophication
67(3)
3.2.2 Toxic Wastes
70(1)
3.2.3 Minamata - A Special Case
71(1)
3.2.4 Synthetic Organics
72(1)
3.3 Ocean Dumping
72(2)
3.4 References
74(5)
4 Hydraulic Design
79(52)
4.1 Concepts and Definitions
79(2)
4.2 Qualitative Descriptions of Receiving Waters
81(4)
4.2.1 Coastal Waters
84(1)
4.2.2 Rivers
84(1)
4.2.3 Estuaries
85(1)
4.3 Methods of Analysis for Outfall Siting
85(15)
4.3.1 First Questions
85(2)
4.3.2 Worked Example of Near Field Dilution
87(1)
4.3.3 Field Surveys
87(5)
4.3.4 Numerical Modeling
92(6)
4.3.5 Physical Hydraulic Models
98(2)
4.4 Equations for Estimating Turbulent Diffussion
100(7)
4.5 Comparisons of Results
107(2)
4.6 Outfall and Outlet Location
109(5)
4.6.1 Information Needs
109(1)
4.6.2 Water Quality
109(1)
4.6.3 Worked Example of Outfall Siting
110(4)
4.7 Outlet Design and Initial Dilution
114(11)
4.7.1 Single Open Ends, Rose Diffusers Caps, Multiport Diffusers
115(2)
4.7.2 Initial Dilution for Plumes from Single Round Ports
117(1)
4.7.3 Initial Dilution from a Line Source
118(1)
4.7.4 Initial Dilution from a Line of Port Clusters
119(1)
4.7.5 Quick Estimate of Likelihood of Plume Submergence
120(2)
4.7.6 Diffuser Design
122(3)
4.8 Other Hydraulic Design Considerations
125(3)
4.8.1 Pipe Diameter
125(1)
4.8.2 Thrust at Bends
125(1)
4.8.3 Hydraulic Transients
126(1)
4.8.4 Excess Hydrostatic Head
127(1)
4.8.5 Drop Stuctures
127(1)
4.8.6 Provision for Pigging
128(1)
4.9 Appendix. A note on Post-Audits
128(1)
4.10 References
129(2)
5 Construction Materials
131(8)
5.1 Pipe Materials
131(5)
5.1.1 Cast Iron
131(2)
5.1.2 Wrought Iron
133(1)
5.1.3 Plastic
133(2)
5.1.4 Reinforced Concrete
135(1)
5.1.5 Coated Steel
136(1)
5.2 Recommended Reading
136(3)
6 On-Bottom Stability
139(16)
6.1 Forces
139(2)
6.1.1 Soil Forces
139(1)
6.1.2 Hydrodynamic Forces
140(1)
6.2 Vertical Stability of Unburied Pipelines
141(1)
6.3 Vertical Stability of Buried Pipelines
142(5)
6.4 Lateral Stability of Unburied Pipelines
147(4)
6.4.1 Density Anchors
149(1)
6.4.2 Mechanical Anchors
149(2)
6.5 Lateral Stability of Buried Pipelines
151(1)
6.6 References
151(4)
7 Stress Analysis
155(6)
7.1 Identifying and Analyzing Stress
155(4)
7.1.1 Stress from Anchors
155(1)
7.1.2 Unsupported Span Analysis
155(2)
7.1.3 Collapse/Buckling Analysis
157(2)
7.2 References
159(2)
8 Corrosion Control
161(6)
8.1 Corrosion Protection for Steel in Seawater
161(6)
8.1.1 Cathodic Protection
161(4)
8.1.2 External Coatings
165(1)
8.1.3 Internal Coatings
166(1)
8.1.4 Recommended Reading
166(1)
9 Ocean Outfall Construction
167(36)
9.1 Practical Limits to Current Construction Practices
167(4)
9.1.1 Selecting a Construction Method
167(1)
9.1.2 Classification of Construction Methods
168(3)
9.1.3 State-of-the-Art Constraints
171(1)
9.2 Construction Methods
171(18)
9.2.1 Bottom Assembly Methods
171(2)
9.2.1 Pipe Laying from a Mobile Jack-up Platform
173(1)
9.2.3 Pipe Laying from a Trestle
173(1)
9.2.4 Pipe Laying from a Floating Crane Barge
173(5)
9.2.5 Surface Assembly from an Offshore Lay Barge
178(3)
9.2.6 Bottom Pull Method
181(2)
9.2.7 Floats and Chain Method
183(1)
9.2.8 On-Bottom Connection of Short Lengths
183(3)
9.2.9 Bottom Pull from Floating Work Platforms
186(1)
9.2.10 Surface Pull (Floatation) Method
186(3)
9.2.11 Remote Assembly Method
189(1)
9.3 Trenching and Backfilling
189(5)
9.3.1 Controlling Factors
189(2)
9.3.2 Trenching Methods
191(2)
9.3.3 Backfilling Methods
193(1)
9.4 Shore Approach
194(1)
9.4.1 Design Considerations
194(1)
9.4.2 Construction Considerations
195(1)
9.5 Tunneling
195(5)
9.5.1 Horizontal Directional Drilling and Microtunneling
195(5)
9.5.2 Large-diameter Tunnels
200(1)
9.6 Construction Monitoring and Inspection
200(1)
9.7 References
201(2)
10 Monitoring
203(30)
10.1 A Framework for Sustainable Monitoring
203(3)
10.2 Some Performance Monitoring Principles
206(4)
10.2.1 Equilibrium Response Times and Monitoring Design
209(1)
10.3 Hydraulic and Structural Monitoring
210(1)
10.4 Discharge Monitoring
210(1)
10.5 Ecological Monitoring
210(5)
10.5.1 Public Health
211(2)
10.5.2 Ecological Interactions
213(1)
10.5.3 Other Parameters
214(1)
10.6 The Infaunal Trophic Index
215(1)
10.7 Recovery of Damaged Ecosystems
216(1)
10.8 Post-Audits
216(3)
10.9 Regulatory and Zero-Discharge Models
219(2)
10.10 Appendix. Power Spectrum Analysis
221(6)
10.11 References
227(6)
11 Case Studies
233(78)
11.1 Scope of case Studies
233(1)
11.2 The Yangtze Estuary: The Second Shanghai Sewerage Project
234(35)
11.2.1 Introduction
234(1)
11.2.2 Organisation of Feasibility Studies
235(1)
11.2.3 Master Plan
236(5)
11.2.4 Layout of Outfall
241(10)
11.2.5 Envionmental Impact
251(9)
11.2.6 Other Studies
260(8)
11.2.7 References
268(1)
11.3 The Thames Estuary
269(7)
11.3.1 Recent History of a Maturing Remedial System
269(3)
11.3.2 The DSIR Dissolved Oxygen Model
272(1)
11.3.3 Hydrography of th Thames Estuary
273(1)
11.3.4 Fish Populations
274(1)
11.3.5 Principal Findings and Conclusions
274(1)
11.3.6 References
275(1)
11.4 The Bosporus and Sea of Marmara
276(16)
11.4.1 Regional Geography and Oceanography
276(1)
11.4.2 Oceanography of the Bosporus
277(4)
11.4.3 Two-Layer Current System in the Turkish Straits
281(2)
11.4.4 Evolving Environmental Engineering Design Criteria
283(4)
11.4.5 Environmental Impact of Outfall Alternatives
287(1)
11.4.6 Proposed and Constructed Outfalls
288(1)
11.4.7 References
288(4)
11.5 Boston Harbor
292(9)
11.5.1 Early History of Boston Sewerage
292(1)
11.5.2 Proposals for Long Outfalls
292(2)
11.5.3 Selection of a Treatment Plant Site
294(1)
11.5.4 Siting the Outfall, Hydraulic Design
295(2)
11.5.5 Receiving Water Quality Modelling
297(1)
11.5.6 Construction
297(1)
11.5.7 Public Awareness, Community Participation
298(1)
11.5.8 Recommended Reading
299(2)
11.6 Southern California Bight
301(10)
11.6.1 Ocean Disposal of Southern California Wastewaters
301(5)
11.6.2 Recovery of Damaged Ecosystems
306(4)
11.6.3 References
310(1)
12 Cost and Sustainability Factors
311(30)
12.1 What Costs? What Benefits? Who Pays?
312(5)
12.1.1 Limits to Scale in Water Supply and Sanitation
312(2)
12.1.2 Allocating Costs of Water and Sanitation Benefits
314(3)
12.2 Costs of Ocean Outfalls
317(4)
12.3 Estimating Marginal Costs and Benefits
321(5)
12.3.1 Simulating Sewage Treatment Costs and Benefits
321(3)
12.3.2 Measuring Sewage Treatment Costs and Benefits
324(2)
12.4 Principles of Comparative Costing
326(4)
12.4.1 Worked Example of Average Incremental Costing
328(2)
12.5 Sustainable Water and Sanitation Management
330(9)
12.5.1 Water Conflict Identification
330(3)
12.5.2 Water Conflict Resolution
333(1)
12.5.3 Information and Technology Transfer
334(4)
12.5.4 Terms of Reference for Information and Technology Transfer
338(1)
12.5 References
339(2)
13 Index
341