Atnaujinkite slapukų nuostatas

El. knyga: Web and Big Data: 8th International Joint Conference, APWeb-WAIM 2024, Jinhua, China, August 30 - September 1, 2024, Proceedings, Part I

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The five-volume set LNCS 14961, 14962, 14963, 14964 and 14965 constitutes the refereed proceedings of the 8th International Joint Conference on Web and Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30September 1, 2024.





The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions.





The papers are organized in the following topical sections:

Part I: Natural language processing, Generative AI and LLM, Computer Vision and Recommender System.





Part II: Recommender System, Knowledge Graph and Spatial and Temporal Data.





Part III: Spatial and Temporal Data, Graph Neural Network, Graph Mining and Database System and Query Optimization.





Part IV: Database System and Query Optimization, Federated and Privacy-Preserving Learning, Network, Blockchain and Edge computing, Anomaly Detection and Security





Part V: Anomaly Detection and Security, Information Retrieval, Machine Learning, Demonstration Paper and Industry Paper.
.- Natural language processing.

.- A Boundary Feature enhanced Span-based Nested Named Entity Recognition
Method.

.- Enhancing NER with Sentence-Level Entity Detection as an simple Auxiliary
Task.

.- CeER: A Nested Name Entity Recognition Model Incorporating Gaze Feature.

.- External Knowledge Enhancing Meta-Learning Framework for Few-shot Text
Classification via Contrastive Learning and Adversarial Network.

.- Filter-GLAT: Filter Glanced Decoder Output for Non-autoregressive
Transformer.

.- Joint Semantic Relation Extraction for Multiple Entity Packets.

.- RSET: Remapping-based Sorting Method for Emotion Transfer Speech
Synthesis.

.- Explicit Relation-Enhanced AMR for Document-Level Event Argument
Extraction with Global-Local Attention.

.- Parallel Program Generation for Hybrid Tabular-Textual Question
Answering.

.- CGSL: Collaborative Graph and Segment Learning Based Aspect-level
Sentiment Analysis Model.

.- SE-GCN: A Syntactic Information Enhanced Model for Aspect-based Sentiment
Analysis.

.- Generative AI and LLM.

.- Similarity Retrieval and Medical Cross-modal Attention based Medical
Report Generation.

.- Answering Spatial Commonsense Questions based on Chain-of-Thought
Reasoning with Adaptive Complexity.

.- LLM-Based Empathetic Response through Psychologist-Agent Debate.

.- UFI4ER: An Utterance-Level Feature Dynamic Interaction Model for
Cognition-Enhanced Empathetic Response Generation.

.- Enhancing Continual Relation Extraction with Concept Aware Dynamic Memory
Optimization.

.- Knowledge-Enhanced Context Representation for Unbiased Scene Graph
Generation.

.- Modal Complementarity based on Multimodal Large Language Model for
Text-based Person Retrieval.

.- Bridging the Information Gap Between Domain-Specific Model and General LLM
for Personalized Recommendation.

.- Watch Your Words: Successfully Jailbreak LLM by Mitigating the Prompt
Malice.

.- Generating Adversarial Texts by the Universal Tail Word Addition Attack.

.- Smaller Can Be Better: Efficient Data Selection for Pre-training Models.

.- How to Enhance Low-Resource Knowledge Tracing Tasks? A Pre-training and
Gradient Adjusting Fine-tuning Framework.

.- Computer Vision.

.- A Learned Image Compression Method for Electricity Tower Monitoring Based
on the Transformer-CNN-Based Network.

.- A Lightweight OCT Image Classification Model with Low Configuration and
High Efficiency.

.- An Enhanced MobileNet with Multi-Scale Aggregation for DR Classification.

.- GIPUT: Maximizing Photo Coverage Efficiency for UAV Trajectory.

.- LPLA:The Adversarial Attack against License Plate Recognition Systems.

.- PW-CM: A Medical Image Segmentation Based on Consistency Model by Using
Patches and Wavelet Transforms.

.- WS-GCA: A Synergistic Framework for Precise Semantic Segmentation with
Comprehensive Supervision.

.- YOLO-VanNet: An improved YOLOv5 method for PCB surface defect detection.

.- Long video scoring method fusing high-precision pose and spatio-temporal
attention modules.

.- Recommender System.

.- Filter-enhanced Multi-interest Network for Sequential Recommendation.