Atnaujinkite slapukų nuostatas
  • Formatas: 274 pages
  • Išleidimo metai: 29-Oct-2024
  • Leidėjas: Routledge
  • Kalba: eng
  • ISBN-13: 9781040150351

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"When Face Recognition Goes Wrong explores the myriad ways that humans and machines make mistakes in facial recognition. Adopting a critical stance throughout, the book explores why and how humans and machines make mistakes, covering topics including racial and gender biases, neuropsychological disorders, and widespread algorithm problems. The book features personal anecdotes alongside real-world examples to showcase the often life-changing consequences of facial recognition going wrong. These range fromproblems with everyday social interactions, through to eyewitness identification leading to miscarriages of justice and border control passport verification. Concluding with a look to the future of facial recognition asking the world's leading experts what are the big questions that still need answered and can we train humans and machines to be super recognizers. This book is a must-read for anyone interested in facial recognition, or psychology, criminal justice, and law"--

This book explores the myriad ways that humans and machines make mistakes in facial recognition. Adopting a critical stance throughout, the book explores why and how humans and machines make mistakes, covering topics including racial and gender biases, neuropsychological disorders, and widespread algorithm problems.



When Face Recognition Goes Wrong explores the myriad ways that humans and machines make mistakes in facial recognition. Adopting a critical stance throughout, the book explores why and how humans and machines make mistakes, covering topics including racial and gender biases, neuropsychological disorders, and widespread algorithm problems. The book features personal anecdotes alongside real-world examples to showcase the often life-changing consequences of facial recognition going wrong. These range from problems with everyday social interactions through to eyewitness identification leading to miscarriages of justice and border control passport verification.

Concluding with a look to the future of facial recognition, the author asks the world’s leading experts what are the big questions that still need to be answered, and can we train humans and machines to be super recognisers? This book is a must-read for anyone interested in facial recognition, or in psychology, criminal justice and law.

Chapter
1. Introduction to face recognition and eyewitness identification.
Chapter
2. I recognise your face but who are you? Everyday face recognition errors.
Chapter
3. Unconscious transference and misidentifications.
Chapter
4. The influence of race on face recognition and eyewitness identification.
Chapter
5. The influence of gender on face recognition and eyewitness identification.
Chapter
6. The influence of age upon face recognition and eyewitness identification.
Chapter
7. Machine errors in face recognition.
Chapter
8. Disguises, face masks and appearance change.
Chapter
9. Prosopagnosia, Face Blindness.
Chapter
10. Delusions of Misidentification (DMI).
Chapter
11. Super recognisers.
Chapter
12. The future of face recognition research.

Catriona Havard is Professor of Psychology in the School of Psychology & Counselling at The Open University, UK.