Atnaujinkite slapukų nuostatas

El. knyga: Why More Is Different: Philosophical Issues in Condensed Matter Physics and Complex Systems

  • Formatas: PDF+DRM
  • Serija: The Frontiers Collection
  • Išleidimo metai: 26-Feb-2015
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662439111
  • Formatas: PDF+DRM
  • Serija: The Frontiers Collection
  • Išleidimo metai: 26-Feb-2015
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662439111

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The physics of condensed matter, in contrast to quantum physics or cosmology, is not traditionally associated with deep philosophical questions. However, as science - largely thanks to more powerful computers - becomes capable of analysing and modelling ever more complex many-body systems, basic questions of philosophical relevance arise. Questions about the emergence of structure, the nature of cooperative behaviour, the implications of the second law, the quantum-classical transition and many other issues. This book is a collection of essays by leading physicists and philosophers. Each investigates one or more of these issues, making use of examples from modern condensed matter research. Physicists and philosophers alike will find surprising and stimulating ideas in these pages.
1 Introduction
1(12)
Brigitte Falkenburg
Margaret Morrison
1.1 Reduction
3(2)
1.2 Emergence
5(2)
1.3 Parts and Wholes
7(6)
Part I Reduction
2 On the Success and Limitations of Reductionism in Physics
13(28)
Hildegard Meyer-Ortmanns
2.1 Introduction
13(2)
2.2 On the Success of Reductionism
15(18)
2.2.1 Symmetries and Other Guiding Principles
15(5)
2.2.2 Bridging the Scales from Micro to Macro
20(4)
2.2.3 When a Single Step Is Sufficient: Pattern Formation in Mass and Pigment Densities
24(3)
2.2.4 From Ordinary Differential Equations to the Formalism of Quantum Field Theory: On Increasing Complexity in the Description of Dynamic Strains of Bacteria
27(4)
2.2.5 Large-Scale Computer Simulations: A Virus in Terms of Its Atomic Constituents
31(2)
2.3 Limitations of Reductionism
33(3)
2.3.1 A Fictive Dialogue For and Against Extreme Reductionism
33(2)
2.3.2 DNA from the Standpoint of Physics and Computer Science
35(1)
2.4 Outlook: A Step Towards a Universal Theory of Complex Systems
36(5)
References
37(4)
3 On the Relation Between the Second Law of Thermodynamics and Classical and Quantum Mechanics
41(14)
Barbara Drossel
3.1 Introduction
41(2)
3.2 The Mistaken Idea of Infinite Precision
43(2)
3.3 From Classical Mechanics to Statistical Mechanics
45(4)
3.3.1 The Standard Argument
45(1)
3.3.2 The Problems with the Standard Argument
46(1)
3.3.3 An Alternative View
47(1)
3.3.4 Other Routes from Classical Mechanics to the Second Law of Thermodynamics
48(1)
3.4 From Quantum Mechanics to Statistical Mechanics
49(4)
3.4.1 The Eigenstate Thermalization Hypothesis
49(1)
3.4.2 Interaction with the Environment Through a Potential
50(1)
3.4.3 Coupling to an Environment with Many Degrees of Freedom
51(1)
3.4.4 Quantum Mechanics as a Statistical Theory that Includes Statistical Mechanics
52(1)
3.5 Conclusions
53(2)
References
53(2)
4 Dissipation in Quantum Mechanical Systems: Where Is the System and Where Is the Reservoir?
55(14)
Joachim Ankerhold
4.1 Introduction
55(1)
4.2 Dissipation and Noise in Classical Systems
56(1)
4.3 Dissipative Quantum Systems
57(3)
4.4 Specific Heat for a Brownian Particle
60(1)
4.5 Roles Reversed: A Reservoir Dominates Coherent Dynamics
61(2)
4.6 Emergence of Classicality in the Deep Quantum Regime
63(3)
4.7 Summary and Conclusion
66(3)
References
67(2)
5 Explanation Via Micro-reduction: On the Role of Scale Separation for Quantitative Modelling
69(22)
Rafaela Hillerbrand
5.1 Introduction
69(2)
5.2 Explanation and Reduction
71(3)
5.2.1 Types of Reduction
72(1)
5.2.2 Quantitative Predictions and Generalized State Variables
73(1)
5.3 Predicting Complex Systems
74(6)
5.3.1 Scale Separation in a Nutshell
75(1)
5.3.2 Lasers
76(2)
5.3.3 Fluid Dynamic Turbulence
78(2)
5.4 Scale Separation, Methodological Unification, and Micro-Reduction
80(3)
5.4.1 Fundamental Laws: Field Theories and Scale Separation
81(1)
5.4.2 Critical Phenomena
82(1)
5.5 Perturbative Methods and Local Scale Separation
83(1)
5.6 Reduction, Emergence and Unification
84(7)
References
86(5)
Part II Emergence
6 Why Is More Different?
91(24)
Margaret Morrison
6.1 Introduction
91(2)
6.2 Autonomy and the Micro/Macro Relation: The Problem
93(3)
6.3 Emergence and Reduction
96(4)
6.4 Phase Transitions, Universality and the Need for Emergence
100(7)
6.5 Renormalization Group Methods: Between Physics and Mathematics
107(6)
6.6 Conclusions
113(2)
References
113(2)
7 Autonomy and Scales
115(22)
Robert Batterman
7.1 Introduction
115(1)
7.2 Autonomy
116(6)
7.2.1 Empirical Evidence
117(3)
7.2.2 The Philosophical Landscape
120(2)
7.3 Homogenization: A Means for Upscaling
122(10)
7.3.1 RVEs
122(3)
7.3.2 Determining Effective Moduli
125(3)
7.3.3 Eshelby's Method
128(4)
7.4 Philosophical Implications
132(5)
References
134(3)
8 More is Different...Sometimes: Ising Models, Emergence, and Undecidability
137(16)
Paul W. Humphreys
8.1 Anderson's Claims
138(2)
8.2 Undecidability Results
140(1)
8.3 Results for Infinite Ising Lattices
141(3)
8.4 Philosophical Consequences
144(3)
8.5 The Axiomatic Method and Reduction
147(3)
8.6 Finite Results
150(1)
8.7 Conclusions
150(3)
References
151(2)
9 Neither Weak, Nor Strong? Emergence and Functional Reduction
153(16)
Sorin Bangu
9.1 Introduction
153(1)
9.2 Types of Emergence and F-Reduction
154(4)
9.3 Strong or Weak?
158(6)
9.4 Conclusion
164(5)
References
164(5)
Part III Parts and Wholes
10 Stability, Emergence and Part-Whole Reduction
169(32)
Andreas Huttemann
Reimer Kuhn
Orestis Terzidis
10.1 Introduction
169(4)
10.2 Evidence from Simulation: Large Numbers and Stability
173(4)
10.3 Limit Theorems and Description on Large Scales
177(3)
10.4 Interacting Systems and the Renormalization Group
180(4)
10.5 The Thermodynamic Limit of Infinite System Size
184(4)
10.6 Supervenience, Universality and Part-Whole-Explanation
188(5)
10.7 Post Facto Justification of Modelling
193(8)
A.1 Renormalization and Cumulant Generating Functions
194(2)
A.2 Linear Stability Analysis
196(3)
References
199(2)
11 Between Rigor and Reality: Many-Body Models in Condensed Matter Physics
201(26)
Axel Gelfert
11.1 Introduction
201(1)
11.2 Many-Body Models as Mathematical Models
202(3)
11.3 A Brief History of Many-Body Models
205(4)
11.4 Constructing Quantum Hamiltonians
209(5)
11.5 Many-Body Models as Mediators and Contributors
214(6)
11.5.1 Rigorous Results and Relations
216(1)
11.5.2 Cross-Model Support
217(1)
11.5.3 Model-Based Understanding
218(2)
11.6 Between Rigor and Reality: Appraising Many-Body Models
220(7)
References
225(2)
12 How Do Quasi-Particles Exist?
227(24)
Brigitte Falkenburg
12.1 Scientific Realism
228(2)
12.2 Particle Concepts
230(5)
12.3 Quasi-Particles
235(9)
12.3.1 The Theory
235(3)
12.3.2 The Concept
238(2)
12.3.3 Comparison with Physical Particles
240(2)
12.3.4 Comparison with Virtual Particles
242(1)
12.3.5 Comparison with Matter Constituents
243(1)
12.4 Back to Scientific Realism
244(4)
12.4.1 Are Holes Fake Entities?
245(1)
12.4.2 What About Quasi-Particles in General?
246(2)
12.5 How Do Quasi-Particles Exist?
248(3)
References
249(2)
13 A Mechanistic Reading of Quantum Laser Theory
251(22)
Meinard Kuhlmann
13.1 Introduction
251(1)
13.2 What Is a Mechanism?
252(1)
13.3 Quantum Laser Theory Read Mechanistically
253(9)
13.3.1 The Explanandum
253(1)
13.3.2 Specifying the Internal Dynamics
253(5)
13.3.3 Finding the System Dynamics
258(2)
13.3.4 Why Quantum Laser Theory is a Mechanistic Theory
260(2)
13.4 Potential Obstacles for a Mechanistic Reading
262(5)
13.4.1 Is "Enslavement" a Non-mechanistic Concept?
262(2)
13.4.2 Why Parts of a Mechanism don't need to be Spatial Parts
264(2)
13.4.3 Why Quantum Holism doesn't Undermine Mechanistic Reduction
266(1)
13.5 The Scope of Mechanistic Explanations
267(3)
13.6 Conclusion
270(3)
References
270(3)
Name Index 273(4)
Titles in this Series 277
Prof. Brigitte Falkenburg TU Dortmund, Germany

Prof. Margaret Morrison University of Toronto, Canada.