Atnaujinkite slapukų nuostatas

El. knyga: Wigner Monte Carlo Method for Nanoelectronic Devices: A Particle Description of Quantum Transport and Decoherence

(University of Paris-Sud, Orsay, France), (University of Paris-Sud, Orsay, France)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 01-Mar-2013
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118618448
  • Formatas: EPUB+DRM
  • Išleidimo metai: 01-Mar-2013
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118618448

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The emergence and rapid growth of nanoelectronics has led us to re-examine the principles of transport theory used in the physics of semiconductor devices and in the engineering community. It has become apparent that it is very important to reconsider the traditional semi-classical view of charge carrier transport and to properly take into account the wave-like nature of electrons by considering not only their coherence but also out-of-equilibrium states and scattering effects.

This book gives an overview of quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique can be applied to typical devices exhibiting quantum phenomena, such as the resonant tunneling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part of the book, decoherence theory is used to explain the emergence of semi-classical transport in nanodevices.



This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.
Symbols ix
Abbreviations xiii
Introduction xv
Acknowledgments xxi
Chapter 1 Theoretical Framework of Quantum Transport in Semiconductors and Devices
1(56)
1.1 The fundamentals: a brief introduction to phonons, quasi-electrons and envelope functions
2(9)
1.1.1 The basic concepts: band structure and phonon dispersion
2(6)
1.1.2 Quasi-electron/phonon scattering
8(1)
1.1.3 Quasi-electron/quasi-electron and quasi-electron/impurity scattering
9(2)
1.2 The semi-classical approach of transport
11(5)
1.2.1 The Boltzmann transport equation
11(2)
1.2.2 Quantum corrections to the Boltzmann equation
13(3)
1.3 The quantum treatment of envelope functions
16(13)
1.3.1 The density matrix formalism
17(3)
1.3.2 The Wigner function formalism
20(7)
1.3.3 The Green's functions formalism
27(2)
1.4 The two main problems of quantum transport
29(28)
1.4.1 The first problem: the modeling of contacts
29(8)
1.4.2 The second problem: the treatment of collisions/scattering in quantum transport
37(20)
Chapter 2 Particle-based Monte Carlo Approach to Wigner-Boltzmann Device Simulation
57(32)
2.1 The particle Monte Carlo technique to solve the BTE
59(12)
2.1.1 Principles and algorithm
59(3)
2.1.2 Multi-subband transport: mode-space approach
62(9)
2.2 Extension of the particle Monte Carlo technique to the WBTE: principles
71(12)
2.2.1 The Wigner paths method
72(1)
2.2.2 The "full Monte Carlo" method
73(3)
2.2.3 The "continuous affinity" method technique
76(7)
2.3 Simple validations via two typical cases
83(3)
2.3.1 First validation of the quantum mechanical treatment: interaction of a wave packet with a tunneling barrier
83(1)
2.3.2 Validation of the semi-classical treatment: N+/N/N+ diode
84(2)
2.4 Conclusion
86(3)
Chapter 3 Application of the Wigner Monte Carlo Method to RTD, MOSFET and CNTFET
89(62)
3.1 The resonant tunneling diode (RTD)
90(9)
3.1.1 Introduction to the RTD
90(2)
3.1.2 Model, simulated structure and current-voltage characteristics
92(2)
3.1.3 Microscopic quantities
94(2)
3.1.4 Comparison with experiment
96(1)
3.1.5 Comparison with the Green's function formalism
96(3)
3.2 The double-gate metal-oxide-semiconductor field-effect transistor (DG-MOSFET)
99(35)
3.2.1 Introduction to the DG-MOSFET
99(3)
3.2.2 Simulated devices
102(1)
3.2.3 Model: transport and scattering
103(6)
3.2.4 Subband profiles and mode-space wave functions
109(2)
3.2.5 Quantum transport effects
111(6)
3.2.6 Impact of scattering
117(4)
3.2.7 Design of nano-MOSFET and factors of merit for CMOS applications
121(4)
3.2.8 Degeneracy effects in source and drain access
125(7)
3.2.9 Some comparisons with experiments
132(2)
3.3 The carbon nanotube field-effect transistor (CNTFET)
134(14)
3.3.1 Introduction to the CNTFET
134(2)
3.3.2 Simulated device
136(1)
3.3.3 Model: band structure, transport and scattering
137(5)
3.3.4 Quantum transport effect
142(6)
3.4 Conclusion
148(3)
3.4.1 Summary of main results
148(1)
3.4.2 Prospective conclusions regarding CMOS devices
149(2)
Chapter 4 Decoherence and Transition from Quantum to Semi-classical Transport
151(32)
4.1 Simple illustration of the decoherence mechanism
152(5)
4.2 Coherence and decoherence of Gaussian wave packets in GaAs
157(14)
4.2.1 Introduction
157(3)
4.2.2 Decoherence of free wave packets in GaAs
160(6)
4.2.3 Impact of decoherence on the interaction of a wave packet with single or double tunnel barrier
166(5)
4.3 Coherence and decoherence in RTD: transition between semi-classical and quantum regions
171(4)
4.3.1 Decoherence in RTD
171(3)
4.3.2 Transition between quantum and semi-classical regions
174(1)
4.4 Quantum coherence and decoherence in DG-MOSFET
175(5)
4.4.1 Electron decoherence
177(2)
4.4.2 Emergence of semi-classical behavior
179(1)
4.5 Conclusion
180(3)
Conclusion 183(4)
Appendix A Average Value of Operators in the Wigner Formalism 187(2)
Appendix B Boundaries of the Wigner Potential 189(2)
Appendix C Hartree Wave Function 191(2)
Appendix D Asymmetry Between Phonon Absorption and Emission Rates 193(2)
Appendix E Quantum Brownian Motion 195(6)
Appendix F Purity in the Wigner formalism 201(2)
Appendix G Propagation of a Free Wave Packet Subject to Quantum Brownian Motion 203(2)
Appendix H Coherence Length at Thermal Equilibrium 205(2)
Bibliography 207(34)
Index 241
Damien Querlioz, University of Paris-Sud, Orsay, France.

Philippe Dollfus, University of Paris-Sud, Orsay, France.