Atnaujinkite slapukų nuostatas

El. knyga: Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines

Edited by (Emeritus Professor, University of KwaZulu-Natal, South Africa)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 11-May-2017
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128094297
  • Formatas: EPUB+DRM
  • Išleidimo metai: 11-May-2017
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128094297

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Wind energy is pivotal in global electricity generation and for contributing to achieving future essential energy demands and targets. In this fast moving field Wind Energy Engineering: an onshore guide is the most advanced, up to date and research focused text on all aspects of wind energy engineering.

This must-have edition starts with an in-depth look at the present state of wind integration and distribution worldwide, and continues with a high-level assessment of the advances in turbine technology and how the investment, planning and economic infrastructure can support those innovations.

Each chapter includes a research overview with a detailed analysis and new case studies looking at how recent research developments can be applied. Written by some of the most foreword thinking professionals in the field and giving a complete examination of one of the most promising and efficient sources of renewable energy this book is an invaluable reference into this cross-disciplinary field for engineers.

  • Each chapter contains analysis of the latest high-level research and explores real world application potential in relation to the developments
  • Uses system international (SI) units and imperial units throughout to appeal to global engineers
  • Each chapter offers measureable data written by a world expert in the field on the latest developments in this fast moving and vital subject

Daugiau informacijos

This core reference features the latest developments in the rapidly expanding field of wind energy engineering, including associated technologies and applications
List of Contributors
xvii
Preface xix
Part I Introduction
1 Why Wind Energy?
Trevor M. Letcher
1.1 Introduction
3(1)
1.2 Climate Change
3(2)
1.3 Background
5(3)
1.4 Advantages of Wind Energy
8(2)
1.5 Challenges Facing the Wind Turbine Industry
10(3)
1.6 The Potential of Wind Energy Worldwide
13(4)
References
13(4)
Part II Wind Resource and Wind Energy Worldwide
2 Wind Power Fundamentals
Alexander Kalmikov
2.1 Wind Physics Basics: What Is Wind and How Wind Is Generated
17(1)
2.2 Wind Types: Brief Overview of Wind Power Meteorology
18(1)
2.3 Fundamental Equation of Wind Power: Kinetic Energy Flux and Wind Power Density
19(2)
2.4 Wind Power Capture: Efficiency in Extracting Wind Power
21(2)
2.5 Conclusion
23(2)
References
23(2)
3 Estimation of Wind Energy Potential and Prediction of Wind Power
Jing Shi
Ergin Erdem
3.1 Introduction
25(1)
3.2 Principles for Successful Development for a Wind Assessment Program
26(2)
3.3 Main Aspects of a Wind Assessment Program
28(5)
3.4 Estimating Wind Power Based on Wind Speed Measurements
33(1)
3.5 Wind Resource Estimation Project: Scope and Methods
34(4)
3.6 Further Considerations for Wind Speed Assessment
38(1)
3.7 Wind Speed and Power Forecasting
39(5)
3.8 Conclusions
44(7)
References
44(7)
4 Global Potential for Wind-Generated Electricity
Xi Lu
Michael B. McElroy
4.1 Introduction
51(3)
4.2 Methodology
54(4)
4.3 Results
58(10)
4.3.1 Global Perspective
58(3)
4.3.2 US Perspective
61(4)
4.3.3 China Perspective
65(3)
4.4 Concluding Remarks
68(7)
Acknowledgments
71(1)
References
71(4)
5 The Future of Wind Energy Development in China
Pei-yang Guo
Dan-yang Zhu
Jacqueline Lam
Victor O.K. Li
5.1 Introduction
75(1)
5.2 Wind Energy Development in China
76(4)
5.2.1 Overview
76(1)
5.2.2 Electricity Market and Wind Energy Market in China
76(4)
5.3 Wind Energy Development in China: Barriers and Drivers
80(9)
5.3.1 Barriers to Wind Energy Development in China
81(5)
5.3.2 Drivers of Wind Energy Development in China
86(3)
5.4 The Future of Wind Energy Development in China
89(2)
5.4.1 Distributed Generation Deployment and Proactive Transmission Planning
89(1)
5.4.2 Offshore Wind Power Planning
89(1)
5.4.3 Smart Grid
90(1)
5.4.4 Merit-Order-Based Dispatch
90(1)
5.4.5 Pricing Improvement
91(1)
5.5 Conclusion
91(4)
Acknowledgment
92(1)
References
92(3)
6 Wind Power in the German System --- Research and Development for the Transition Toward a Sustainable Energy Future
Matthias Luther
Kurt Rohrig
Wilhelm Winter
6.1 Integration of Renewables in Germany and Europe
95(4)
6.2 Onshore and Offshore Wind Development
99(3)
6.3 Network Operation and Grid Development
102(8)
6.3.1 Innovative Methods to Plan and Operate the Power System
105(3)
6.3.2 The System Operation Network Codes
108(1)
6.3.3 The Market-Related Network Codes
108(1)
6.3.4 The Connection-Related Network Codes
109(1)
6.4 Further Research and Development for Wind Power Integration
110(11)
6.4.1 New Control Concepts for PE-Dominated Power Systems
111(1)
6.4.2 Wind Power Forecasts
112(2)
6.4.3 Wind Farm Clusters
114(3)
6.4.4 Virtual Power Plants
117(1)
6.4.5 Sector Coupling Concepts
118(1)
6.4.6 European Wind Integration Projects and Studies
119(2)
6.5 Summary
121(6)
References
122(5)
Part III Wind Turbine Technology
7 History of Harnessing Wind Power
Magdi Ragheb
7.1 Introduction
127(2)
7.2 Wind Machines in Antiquity
129(1)
7.3 Islamic Civilization Windmills
130(2)
7.4 Medieval European Windmills
132(1)
7.5 Aegean and Mediterranean Windmills
133(2)
7.6 Dutch and European Windmills
135(3)
7.7 The American Windmill
138(1)
7.8 Historical Developments
139(2)
7.9 Windmills Applications
141(1)
7.10 Discussion
141(4)
References
142(3)
8 Wind Turbine Technologies
Anca D. Hansen
8.1 Introduction
145(1)
8.2 Overview of Wind Turbine Components
145(10)
8.2.1 Aerodynamic Rotor
146(1)
8.2.2 Transmission System
146(1)
8.2.3 Generator
147(4)
8.2.4 Power Electronic Interface
151(1)
8.2.5 Control System and Wind Turbine Control Capabilities
152(3)
8.3 Contemporary Wind Turbine Technologies
155(4)
8.3.1 Fixed-Speed Wind Turbines (Type 1)
155(1)
8.3.2 Limited Variable-Speed Wind Turbines (Type 2)
156(1)
8.3.3 Variable-Speed Wind Turbines With Partial-Scale Power Converter (Type 3)
157(1)
8.3.4 Variable-Speed Wind Turbines With Full-Scale Power Converter (Type 4)
158(1)
8.4 Conclusions
159(2)
References
159(2)
9 Aerodynamics and Design of Horizontal-Axis Wind Turbines
Martin O.L. Hansen
9.1 Introduction
161(1)
9.2 A Short Description on How a Wind Turbine Works
162(1)
9.3 1D Momentum Equations
163(4)
9.4 Blade Element Momentum Method
167(5)
9.4.1 The Blade Element Momentum Method
172(1)
9.5 Use of Steady Blade Element Momentum Method
172(6)
9.6 Aerodynamic Blade Design
178(3)
9.7 Unsteady Loads and Fatigue
181(2)
9.8 Brief Description of Design Process
183(2)
References
183(2)
10 Vertical Axis Wind Turbines: Farm and Turbine Design
Robert Whittlesey
10.1 Vertical Axis Wind Turbines History
185(1)
10.2 Vertical Axis Wind Farms
186(2)
10.2.1 Initial Research on VAWT Farms
186(1)
10.2.2 Power Density
187(1)
10.3 Design Guidelines
188(12)
10.3.1 Power Coefficient
189(1)
10.3.2 Lift Versus Drag-Based VAWT
189(4)
10.3.3 Starting
193(1)
10.3.4 Blade Airfoil Choice
194(3)
10.3.5 Blade-Tip Vortices
197(1)
10.3.6 Blade Reynolds Number
198(1)
10.3.7 Turbine Mass
198(1)
10.3.8 Turbine Diameter
198(1)
10.3.9 Number of Blades
199(1)
10.3.10 Struts
199(1)
10.4 Summary
200(3)
References
200(3)
11 Multielement Airfoils for Wind Turbines
Adam M. Ragheb
Michael S. Selig
11.1 Introduction
203(1)
11.2 Transportation Benefits
204(1)
11.3 Structural Benefits
205(1)
11.4 Multielement Wind Turbine Blades
206(9)
11.5 Other Multielement Wind Turbine Research
215(1)
11.6 Discussion
216(5)
Acknowledgments
217(1)
References
218(3)
12 Civil Engineering Aspects of a Wind Farm and Wind Turbine Structures
Subhamoy Bhattacharya
12.1 Energy Challenge
221(1)
12.2 Wind Farm and Fukushima Nuclear disaster
221(3)
12.2.1 Case Study: Performance of Near Shore Wind Farm During 2012 Tohoku Earthquake
221(3)
12.3 Wind Farm Site Selection
224(4)
12.3.1 Case Studies: Burbo Wind Farm (see Fig. 12.6 for location)
226(1)
12.3.2 ASIDE on the Economics
227(1)
12.4 General Arrangement of a Wind Farm
228(1)
12.5 Choice of Foundations for a Site
228(1)
12.6 Foundation Types
228(11)
12.6.1 Gravity-Based Foundation System
233(1)
12.6.2 Suction Buckets or Caissons
233(1)
12.6.3 Pile Foundations
234(1)
12.6.4 Seabed Frame or Jacket Supporting Supported on Pile or Caissons
235(2)
12.6.5 Floating Turbine System
237(2)
12.7 Site Layout, Spacing of Turbines, and Geology of the Site
239(4)
12.7.1 Case Study: Westermost Rough
240(1)
12.7.2 Economy of Scales for Foundation
241(1)
References
242(1)
13 Civil Engineering Challenges Associated With Design of Offshore Wind Turbines With Special Reference to China
Subhamoy Bhattacharya
Lizhong Wang
Junwei Liu
Yi Hong
13.1 Offshore Wind Potential in China
243(2)
13.2 Dynamic Sensitivity of OWT Structures
245(2)
13.3 Dynamic Issues in Support Structure Design
247(7)
13.3.1 Importance of Foundation Design
252(2)
13.4 Types and Nature of the Loads Acting on the Foundations
254(6)
13.4.1 Loads Acting on the Foundations
254(3)
13.4.2 Extreme Wind and Wave Loading Condition in Chinese Waters
257(3)
13.5 Ground Conditions in Chinese Waters
260(5)
13.5.1 Bohai Sea
261(3)
13.5.2 Seismic Effects
264(1)
13.6 A Note on SLS Design Criteria
265(1)
13.7 Challenges in Analysis of Dynamic Soil---Structure Interaction
266(3)
13.8 Foundation Design
269(2)
13.8.1 Challenges in Monopile Foundation Design and Installation
270(1)
13.8.2 Jacket on Flexible Piles
271(1)
13.9 Concluding Remarks
271(4)
References
272(3)
14 Numerical Methods for SSI Analysis of Offshore Wind Turbine Foundations
Susana Lopez-Querol
Liang Cui
Subhamoy Bhattacharya
14.1 Introduction
275(6)
14.1.1 Need for Numerical Analysis for Carrying out the Design
281(1)
14.2 Types of Numerical Analysis
281(4)
14.2.1 Standard Method Based on Beam on Nonlinear Winkler Spring
281(2)
14.2.2 Advanced Analysis (Finite Element Analysis and Discrete Element Modeling) to Study Foundation-Soil Interaction
283(2)
14.3 Example Application of Numerical Analysis to Study SSI of Monopile
285(14)
14.3.1 Monopile Analysis Using DEM
286(4)
14.3.2 Monopile Analysis Using FEM Using ANSYS Software
290(5)
References
295(4)
15 Reliability of Wind Turbines
Shuangwen Sheng
Ryan O'Connor
15.1 Introduction
299(2)
15.2 Fundamentals
301(4)
15.2.1 Terminology
301(2)
15.2.2 Taxonomy
303(1)
15.2.3 Failure Types
304(1)
15.3 Current Status
305(7)
15.4 Reliability Engineering
312(8)
15.4.1 Data Collection
312(3)
15.4.2 Model Development
315(4)
15.4.3 Forecasting
319(1)
15.5 Case Studies
320(5)
15.5.1 Gearbox Spares Planning
320(1)
15.5.2 Pitch Bearing Maintenance Scheduling
321(4)
15.6 Conclusions
325(4)
Acknowledgments
325(1)
References
325(4)
16 Practical Method to Estimate Foundation Stiffness for Design of Offshore Wind Turbines
Saleh Jalbi
Masoud Shadlou
Subhamoy Bhattacharya
16.1 Introduction
329(3)
16.2 Methods to Estimate Foundation Stiffness
332(5)
16.2.1 Simplified Method (Closed-Form Solutions)
334(2)
16.2.2 Standard Method
336(1)
16.2.3 Advanced Method
336(1)
16.3 Obtaining Foundation Stiffness From Standard and Advanced Method
337(8)
16.3.1 Example Problem (Monopile for Horns Rev 1)
340(5)
16.4 Discussion and Application of Foundation Stiffness
345(8)
16.4.1 Pile Head Deflections and Rotations
345(1)
16.4.2 Prediction of the Natural Frequency
346(3)
16.4.3 Comparison With SAP 2000 Analysis
349(1)
Nomenclature
350(1)
References
351(2)
17 Physical Modeling of Offshore Wind Turbine Model for Prediction of Prototype Response
Domenico Lombardi
Subhamoy Bhattacharya
George Nikitas
17.1 Introduction
353(6)
17.1.1 Complexity of External Loading Conditions
353(2)
17.1.2 Design Challenges
355(3)
17.1.3 Technical Review/Appraisal of New Types of Foundations
358(1)
17.1.4 Physical Modeling for Prediction of Prototype Response
358(1)
17.2 Physical Modeling of OWTs
359(2)
17.2.1 Dimensional Analysis
360(1)
17.2.2 Definition of Scaling Laws for Investigating OWTs
360(1)
17.3 Scaling Laws for OWTs Supported on Monopiles
361(7)
17.3.1 Monopile Foundation
361(1)
17.3.2 Strain Field in the Soil Around the Laterally Loaded Pile
361(2)
17.3.3 CSR in the Soil in the Shear Zone
363(1)
17.3.4 Rate of Soil Loading
364(1)
17.3.5 System Dynamics
364(1)
17.3.6 Bending Strain in the Monopile
365(1)
17.3.7 Fatigue in the Monopile
365(1)
17.3.8 Example of Experimental Investigation for Studying Long-Term Response of 1---100 Scale OWT
366(2)
17.4 Scaling Laws for OWTs Supported on Multipod Foundations
368(5)
17.4.1 Typical Experimental Setups and Results
372(1)
17.5 Conclusions
373(4)
References
373(4)
Part IV Generation of Electricity
18 Energy and Carbon Intensities of Stored Wind Energy
Charles J. Barnhart
18.1 The Need for Storage
377(1)
18.2 Key Characteristics for Storage
378(2)
18.3 Net Energy Analysis of Storing and Curtailing Wind Resources
380(3)
18.4 The Carbon Footprint of Storing Wind Energy
383(2)
18.5 Conclusions
385(4)
References
386(3)
19 Small-Scale Wind Turbines
Patrick A.B. James
AbuBakr S. Bahaj
19.1 Introduction
389(6)
19.2 The Fundamental Concern for Micro-Wind: The Wind Resource
395(6)
19.3 Building Mounted Turbines
401(13)
19.3.1 Rural Building Mounted Turbine
405(2)
19.3.2 Suburban Building Mounted Turbine
407(1)
19.3.3 Urban Building Mounted Turbine
408(1)
19.3.4 Summary Findings: Building Mounted Turbines
409(2)
19.3.5 Field Trial Observations: Pole Mounted Turbines
411(3)
19.4 The Future for Micro-Wind
414(1)
19.5 Conclusions
415(4)
Acknowledgments
416(1)
References
416(3)
20 Integration Into National Grids
Jurgen Weiss
T. Bruce Tsuchida
20.1 Wind Integration: What it Means and Why We Need it
419(2)
20.2 Current/Standard Measures for Wind Integration
421(8)
20.3 The Future of Wind Integration
429(5)
20.4 Conclusions
434(5)
References
435(4)
Part V Environmental Impacts of Wind Energy
21 Life Cycle Assessment: Meta-analysis of Cumulative Energy Demand for Wind Energy Technologies
Michael Carbajales-Dale
21.1 Introduction
439(1)
21.2 Wind Energy Technologies
440(4)
21.2.1 Rotor
442(1)
21.2.2 Nacelle
442(1)
21.2.3 Tower
443(1)
21.2.4 Foundation
443(1)
21.2.5 Balance of Systems
443(1)
21.3 Life-Cycle Assessment
444(1)
21.3.1 Cumulative Energy Demand
444(1)
21.3.2 Energy Payback Time
444(1)
21.3.3 Fractional Reinvestment
445(1)
21.4 Meta-analysis
445(1)
21.4.1 Literature Search
445(1)
21.4.2 Literature Screening
446(1)
21.4.3 Harmonization of Study Boundaries and Data
446(1)
21.5 Results and Discussion
446(6)
21.5.1 Capital Energetic Costs (CEC)
446(1)
21.5.2 Life-Cycle Energy Costs (LCEC)
447(1)
21.5.3 Harmonization
447(2)
21.5.4 Components
449(1)
21.5.5 Trends in Parameters
450(1)
21.5.6 Net Energy Trajectory of the Global Wind Industry
450(2)
21.6 Conclusions
452(23)
Acknowledgments
453(1)
References
453(4)
Appendix A
457(16)
Appendix B
473(2)
22 Environmental and Structural Safety Issues Related to Wind Energy
Kaoshan Dai
Kewei Gao
Zhenhua Huang
22.1 Introduction
475(1)
22.2 Wind-Energy-Induced Environmental Issues and Countermeasures
475(6)
22.2.1 Effects on Animals and Mitigation Strategies
476(2)
22.2.2 Noise Problems and Possible Solutions
478(1)
22.2.3 Visual Impacts and Mitigation
479(1)
22.2.4 Climate Change and Considerations
480(1)
22.3 Structural Safety Studies for Wind Turbine Towers
481(4)
22.3.1 Wind Turbine Tower Structural Performances Under Wind and Seismic Loads
481(2)
22.3.2 Health Monitoring and Vibration Control of Wind Turbine Towers
483(2)
22.4 Summary
485(8)
Acknowledgments
486(1)
References
486(7)
23 Wind Turbines and Landscape
Marc van Grieken
Beatrice Dower
23.1 A Passion for Landscape
493(1)
23.2 What Is Landscape?
493(2)
23.3 Changing Landscape
495(3)
23.3.1 People's Opinions
495(3)
23.4 Technological Advancement
498(4)
23.5 The Perception of Wind Farms
502(4)
23.5.1 Height and Size
502(2)
23.5.2 Composition
504(1)
23.5.3 Movement
504(2)
23.6 Landscapes With Power Generation Objects
506(2)
23.7 What Are the Effects of Wind Farms on Our Landscape?
508(4)
23.7.1 Landscape Effects
509(2)
23.7.2 Visual Effects
511(1)
23.7.3 Landscape and Visual Effects
512(1)
23.8 Mitigation
512(2)
23.8.1 Strategic Approach
513(1)
23.9 Conclusion
514(3)
References
515(2)
24 Global Rare Earth Supply, Life Cycle Assessment, and Wind Energy
Zhehan Weng
Gavin M. Mudd
24.1 Background of Rare Earth Elements
517(2)
24.2 Global REE Supply
519(1)
24.3 REE Permanent Magnets
520(2)
24.4 Life Cycle Assessment of the Use of REE Magnets in Wind Turbines
522(4)
24.5 Global Wind Energy Projections
526(3)
24.6 Implications for Future REE Supply
529(2)
24.7 Conclusion
531(6)
References
532(5)
Part VI Financial Modeling/Wind Economics
25 Economics of Wind Power Generation
Magdi Ragheb
25.1 Introduction
537(1)
25.2 Economic Considerations
537(2)
25.3 Wind Energy Cost Analysis
539(1)
25.4 Levelized Cost of Electricity
539(1)
25.5 Net Present Value
540(1)
25.6 Straight Line Depreciation
541(1)
25.7 Price and Cost Concepts
542(1)
25.8 Wind Turbines Prices
542(1)
25.9 Intermittence Factor
542(1)
25.10 Land Rents, Royalties, and Project Profitability
543(1)
25.11 Project Lifetime
543(1)
25.12 Benchmark Wind Turbine Present Value Cost Analysis
544(2)
25.12.1 Investment
544(1)
25.12.2 Payments
544(1)
25.12.3 Current Income and Expenditures per Year
544(2)
25.13 Incentives and Subsidies
546(2)
25.13.1 Production Tax Credit (PTC)
546(1)
25.13.2 Investment Tax Credit (ITC)
546(1)
25.13.3 Renewable Energy Production Incentive (REPI)
547(1)
25.14 Wind Turbine Present Value Cost Analysis Accounting for the PTC
548(2)
25.14.1 Payments
548(1)
25.14.2 Current Income and Expenditures per Year
548(2)
25.15 Accounting for the PTC as Well as Depreciation and Taxes
550(3)
25.16 Transmission and Grid Issues
553(1)
25.17 Discussion
554(5)
References
554(5)
Part VII Investment, Growth Trends, and the Future of Wind Energy
26 Growth Trends and the Future of Wind Energy
Lauha Fried
Shruti Shukla
Steve Sawyer
26.1 Introduction: Global Status of Wind Power (On- and Offshore) in 2015
559(8)
26.1.1 Asia: Remarkable Year for China
560(2)
26.1.2 North America: Resurgence in the United States
562(1)
26.1.3 Europe: Unparalleled Year for Germany
563(1)
26.1.4 Latin America and the Caribbean: Brazil Continues to Lead
564(1)
26.1.5 Pacific
565(1)
26.1.6 Africa and the Middle East
566(1)
26.1.7 2015: Extraordinary Year Fueled by China's FIT Reduction Plan
566(1)
26.2 Offshore Wind Energy
567(13)
26.2.1 Europe Passes 11 GW Mark
570(3)
26.2.2 UK Remains Largest Global Market
573(1)
26.2.3 Germany Had an Exceptional Year
573(1)
26.2.4 Netherlands: Fourth Largest Market Globally
574(1)
26.2.5 France Gearing up to Deliver
575(1)
26.2.6 China Passes the 1 GW Milestone
575(1)
26.2.7 Domestic Industry Moves Japan Forward
576(2)
26.2.8 Upcoming Markets
578(2)
26.3 The Future: Market Forecast (On- and Offshore) to 2020
580(7)
References
586(1)
Index 587
Professor Trevor Letcher is an Emeritus Professor at the University of KwaZulu-Natal, South Africa, and living in the United Kingdom. He was previously Professor of Chemistry, and Head of Department, at the University of the Witwatersrand, Rhodes University, and Natal, in South Africa (1969-2004). He has published over 300 papers on areas such as chemical thermodynamic and waste from landfill in peer reviewed journals, and 100 papers in popular science and education journals. Prof. Letcher has edited and/or written 32 major books, of which 22 were published by Elsevier, on topics ranging from future energy, climate change, storing energy, waste, tyre waste and recycling, wind energy, solar energy, managing global warming, plastic waste, renewable energy, and environmental disasters. He has been awarded gold medals by the South African Institute of Chemistry and the South African Association for the Advancement of Science, and the Journal of Chemical Thermodynamics honoured him with a Festschrift in 2018. He is a life member of both the Royal Society of Chemistry (London) and the South African Institute of Chemistry. He is on the editorial board of the Journal of Chemical Thermodynamics, and is a Director of the Board of the International Association of Chemical Thermodynamics since 2002.