Atnaujinkite slapukų nuostatas

El. knyga: Zakharov System and its Soliton Solutions

  • Formatas: PDF+DRM
  • Išleidimo metai: 17-Oct-2016
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811025822
  • Formatas: PDF+DRM
  • Išleidimo metai: 17-Oct-2016
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811025822

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book focuses on the theory of the Zakharov system in the context of plasma physics. It has been over 40 years since the system was first derived by V. E. Zakharov and in the course of those decades, many innovative achievements with major impacts on other research fields have been made.





The book represents a first attempt to highlight the mathematical theories that are most important to researchers, including the existence and unique problems, blow-up, low regularity, large time behavior and the singular limit. Rather than attempting to examine every aspect of the Zakharov system in detail, it provides an effective road map to help readers access the frontier of studies on this system.  
1 Physical Background of Zakharov Equations and Its Soliton Solutions
1(20)
1.1 Transport Process in a Plasma
1(5)
1.2 System of Equations for Two-Fluid Dynamics
6(5)
1.3 Solitons in Plasmas
11(10)
1.3.1 Soliton in Ion Acoustic Wave
12(2)
1.3.2 Langmuir Soliton
14(2)
1.3.3 Ls Soliton
16(1)
1.3.4 The Light Soliton
17(1)
1.3.5 Solitons of Simplified Two-Fluid System
18(3)
2 On the Existence, Blowup and Large Time Behavior of the Zakharov System
21(108)
2.1 Existence and Uniqueness Theory of the Zakharov System
22(18)
2.1.1 Weak Solution Theory of Zakharov System
23(3)
2.1.2 Local Smooth Solution to Zakharov System
26(9)
2.1.3 Global Smooth Solution to Zakharov System
35(5)
2.2 Blowup Phenomenon of the Zakharov System
40(36)
2.2.1 Existence of Self-Similar Blowup Solutions to Zakharov System
40(4)
2.2.2 Auxiliary Propositions and Lemmas
44(3)
2.2.3 Existence and Uniqueness of Radially Symmetric Solutions
47(15)
2.2.4 Concentration Phenomenon of the Blowup Solutions
62(11)
2.2.5 Nonexistence of Blowup Solutions with Minimum Mass
73(3)
2.3 Scattering for the Zakharov System in 3D
76(30)
2.3.1 Reduction of the System and Linear Decay Estimates
77(4)
2.3.2 Energy Estimate
81(4)
2.3.3 Decay Estimate for the Wave Equation
85(6)
2.3.4 Weighted Estimates for the Wave Component
91(4)
2.3.5 Weighted Estimates for the Schrodinger Component
95(11)
2.4 Global Attractors of Dissipative Zakharov System
106(23)
2.4.1 Uniform a Priori Estimates
109(12)
2.4.2 Existence of Global Attractor
121(8)
3 Studies on Generalized Zakharov System
129(88)
3.1 Zakharov System in Nonhomogeneous Medium
129(14)
3.1.1 A Priori Estimates
130(9)
3.1.2 Existence and Uniqueness of Global Smooth Solutions
139(4)
3.2 Klein--Gordon--Zakharov System
143(9)
3.3 Zakharov System in Two Dimensional Ion-Acoustic Waves
152(12)
3.4 Zakharov Systems with Magnetic Field Effect
164(29)
3.4.1 Reduction of Zakharov System with a Magnetic Field
164(3)
3.4.2 Conservation Laws and Existence of Weak Solutions
167(4)
3.4.3 Regularized System for the Magnetic Zakharov System
171(3)
3.4.4 Local Existence Theory of Zakharov System in Cold Plasmas
174(6)
3.4.5 Local Existence Theory for Zakharov System in Hot Plasmas
180(8)
3.4.6 Global Existence of Smooth Solutions
188(2)
3.4.7 Convergence Behavior of Zakharov System with Magnetic Field Effect
190(3)
3.5 Global Well-Posedness for the Quantum Zakharov System
193(24)
3.5.1 The Main Results
194(2)
3.5.2 Some Energy Estimates for the Solution
196(7)
3.5.3 Proof of the Global Well-Posedness Result
203(8)
3.5.4 Proof of the Classic Limit Behavior
211(6)
4 Low Regularity Theories of Zakharov System
217(76)
4.1 Preliminaries
218(8)
4.1.1 Work Space
218(2)
4.1.2 Linear Estimates
220(6)
4.2 Global Well-Posedness for One Dimensional Zakharov System
226(21)
4.2.1 Main Results and Introduction of the Strategy
226(4)
4.2.2 Estimates for Groups and Duhamel Terms
230(7)
4.2.3 Proof of Global Well-Posedness
237(3)
4.2.4 Multilinear Estimates
240(7)
4.3 Low Regularity for Zakharov System in Higher Dimension
247(21)
4.3.1 Reduction of the System
247(2)
4.3.2 Estimates of Nonlinear Terms
249(14)
4.3.3 Well-Posedness of Zakharov System in Higher Dimensions
263(5)
4.4 Well-Posedness of Two Dimensional Zakharov System
268(25)
4.4.1 Local Well-Posedness Result
268(5)
4.4.2 Proof of the Main Theorem
273(5)
4.4.3 Proof of Multilinear Estimates
278(15)
5 Singular Limit of Klein--Gordon--Zakharov System with Infinite Propagation Speed
293(42)
5.1 Introduction
293(3)
5.2 Preliminary Knowledge
296(9)
5.2.1 Notations and the Frequency Decomposition
296(2)
5.2.2 Local Well-Posedness Result
298(1)
5.2.3 Reduction of the System
299(2)
5.2.4 Strichartz Norms, Fourier Restriction Norms and Related Estimates
301(4)
5.3 Bilinear Estimates for Regular Interactions and Non-resonant Interactions
305(9)
5.4 Energy Estimate on the Resonant Components
314(5)
5.5 Convergence Results
319(4)
5.5.1 Limit Behavior of the Klein--Gordon--Zakharov System
320(1)
5.5.2 Uniform Bounds and Two Lemmas
321(2)
5.6 Proof of the Main Results
323(5)
5.7 Convergence in the Energy Space with Small Initial Data
328(7)
References 335