Atnaujinkite slapukų nuostatas

Zebrafish: Disease Models and Chemical Screens 4th edition, Volume 138 [Kietas viršelis]

Volume editor (Professor of Biochemistry and Marine Biology at Northeastern University), Volume editor (Professor, Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, USA), Volume editor (Boston Children's Hospital / HHMI, Boston, MA, USA)
  • Formatas: Hardback, 746 pages, aukštis x plotis: 235x191 mm, weight: 1700 g
  • Serija: Methods in Cell Biology
  • Išleidimo metai: 27-Jan-2017
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0128034734
  • ISBN-13: 9780128034736
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 746 pages, aukštis x plotis: 235x191 mm, weight: 1700 g
  • Serija: Methods in Cell Biology
  • Išleidimo metai: 27-Jan-2017
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0128034734
  • ISBN-13: 9780128034736
Kitos knygos pagal šią temą:

The Zebrafish: Disease Models and Chemical Screens, Fourth Edition, the latest volume in the Methods in Cell Biology series, looks at methods for analyzing genetics, genomics, and transcriptomics of zebrafish. Chapters cover such topics as gene-trap mutagenesis, genetic screens for mutations, gene editing in zebrafish, homologous gene targeting, genome-wide RNA tomography, developmental epigenetics, and the zebrafish interactome.

  • Covers sections on model systems and functional studies, imaging-based approaches, and emerging studies
  • Includes chapters written by experts in the field
  • Contains cutting-edge material on the topics discussed

Recenzijos

Praise for the Series: "The series is invaluable for workers at all levels of cell biology." --Nature

Daugiau informacijos

This new volume in the Methods in Cell Biology series looks at methods for the genetics, genomics, and transcriptomics of zebrafish
Contributors xvii
Preface xxiii
PART I ADIPOSE TISSUE
Chapter 1 In Vivo Imaging and Quantification of Regional Adiposity in Zebrafish
3(28)
J.E.N. Minchin
J.F. Rawls
Introduction
4(1)
1 Rationale
5(2)
2 Materials
7(4)
3 Methods
11(12)
4 Summary
23(8)
Acknowledgments
24(1)
References
24(7)
PART II INNATE AND ADAPTIVE IMMUNE SYSTEMS
Chapter 2 Innate Immune Cells and Bacterial Infection in Zebrafish
31(30)
J.W. Astin
P. Keerthisinghe
L. Du
L.E. Sanderson
K.E. Crosier
P.S. Crosier
C.J. Hall
Introduction
32(3)
1 Quantifying the Innate Immune Cell Response to Bacterial Infection
35(7)
2 Bioassays for Assessing Neutrophil Bactericidal Function
42(4)
3 Bioassays for Assessing Macrophage Bactericidal Function
46(4)
4 Drug Discovery Platform to Identify New Immunomodulatory Drugs
50(11)
Acknowledgments
55(1)
References
55(6)
Chapter 3 Best Practices for Germ-Free Derivation and Gnotobiotic Zebrafish Husbandry
61(40)
E. Melancon
S. Gomez De La Torre Canny
S. Sichel
M. Kelly
T.J. Wiles
J.F. Rawls
J.S. Eisen
K. Guillemin
Introduction
62(4)
1 Experimental Procedures
66(23)
2 Prospectus
89(4)
3 Solutions
93(8)
Acknowledgments
95(1)
References
95(6)
Chapter 4 Infectious Disease Models in Zebrafish
101(36)
C. Sullivan
M.A. Matty
D. Jurczyszak
K.A. Gabor
P.J. Millard
D.M. Tobin
C.H. Kim
Introduction
103(1)
1 Methods for Systemic Bacterial and Viral Infections
104(19)
2 Methods for Localized Bacterial and Viral Infections
123(14)
Conclusion
128(1)
References
129(8)
Chapter 5 Live Imaging the Earliest Host Innate Immune Response to Preneoplastic Cells Using a Zebrafish Inducible KalTA4-ERT2/UAS System
137(14)
D.W. Laux
L. Kelly
I. Ribeiro Bravo
T. Ramezani
Y. Feng
Introduction
138(3)
1 Generation of Preneoplastic Cell Clones Using the KalTA4-ERT2/UAS System in Zebrafish Larvae
141(2)
2 Live Imaging Preneoplastic Cell: Neutrophil Interaction Using Confocal Microscopy
143(2)
3 Image Analysis and 4D Reconstruction
145(6)
Conclusion
147(1)
Acknowledgments
147(1)
References
147(4)
Chapter 6 Studying the Adaptive Immune System in Zebrafish by Transplantation of Hematopoietic Precursor Cells
151(14)
N. Iwanami
I. Hess
M. Schorpp
T. Boehm
Introduction
152(3)
1 Methodology for the Transplantation of Hematopoietic Cells
155(2)
2 Discussion
157(2)
3 Future Directions
159(6)
Acknowledgments
159(1)
References
160(5)
PART III BLOOD AND LYMPH
Chapter 7 Hematopoietic Stem Cell Development: Using the Zebrafish to Identify Extrinsic and Intrinsic Mechanisms Regulating Hematopoiesis
165(28)
J.M. Frame
S.-E. Lim
T.E. North
Introduction to Hematopoietic Development
166(5)
1 Use of Zebrafish to Investigate Hematopoietic Stem Cell Development
171(8)
2 Zebrafish Tools and Protocols
179(14)
References
184(9)
Chapter 8 Studying Disorders of Vertebrate Iron and Heme Metabolism Using Zebrafish
193(28)
Lisa N. van der Vorm
Barry H. Paw
1 Overview of Vertebrate Cellular Iron and Heme Metabolism
194(2)
2 Advantageous Properties of Zebrafish to Study Genetics
196(1)
3 Tools to Study Iron and Heme Metabolism Using Zebrafish
197(24)
Conclusions and Future Directions
212(1)
Acknowledgments
212(1)
References
212(9)
Chapter 9 The Lymphatic Vasculature Revisited---New Developments in the Zebrafish
221(20)
Y. Padberg
S. Schulte-Merker
A. van Impel
1 Development of the Lymphatic System in the Zebrafish Trunk
222(2)
2 Molecular Mechanisms Regulating Lymphatic Cell Fate Specification
224(3)
3 Vegfc Signaling and Sprouting From the Posterior Cardinal Vein
227(2)
4 Parachordal Lymphangioblast Migration at the Level of the Horizontal Myoseptum
229(2)
5 Development of Lymphatic Structures in the Head and the Gut
231(10)
Concluding Remarks
233(1)
References
233(8)
PART IV VISCERAL ORGANS
Chapter 10 Modeling Intestinal Disorders Using Zebrafish
241(30)
X. Zhao
M. Pack
1 Intestinal Development, Morphology, and Physiology
242(3)
2 Intestinal Microbiota and Host---Microbe Interactions
245(2)
3 Intestinal Inflammatory Conditions
247(7)
4 Enteric Nervous System and Motility Disorders
254(4)
5 Intestinal Tumorigenesis and Cancer
258(13)
Concluding Remarks
259(1)
Acknowledgments
260(1)
References
260(11)
Chapter 11 Analysis of Pancreatic Disease in Zebrafish
271(28)
S.C. Eames Nalle
K.F. Franse
M.D. Kinkel
Introduction
272(1)
1 Method
1. Fasting Adult Zebrafish
273(2)
2 Method
2. Weighing Live, Swimming Zebrafish Without Anesthetic
275(1)
3 Method
3. Glucose Delivery to Adult Zebrafish Using Intraperitoneal Injection
276(9)
4 Method
4. Dissection of the Pancreas, En Bloc, for Histology
285(3)
5 Method
5. Sterile Dissection and Culture of the Principal Islet
288(11)
Acknowledgments
294(1)
References
294(5)
PART V MUSCULOSKELETAL SYSTEM
Chapter 12 Using the Zebrafish to Understand Tendon Development and Repair
299(22)
J.W. Chen
J.L. Galloway
Introduction
300(1)
1 Tendon Structure
301(1)
2 Tendon Formation and Differentiation
301(3)
3 Tissue Interactions Within the Developing Musculoskeletal System
304(2)
4 Methods to Study the Embryonic Tendon Program in Zebrafish
306(15)
Conclusion
314(1)
Acknowledgments
314(1)
References
315(6)
Chapter 13 Small Teleost Fish Provide New Insights Into Human Skeletal Diseases
321(26)
P.E. Witten
M.P. Harris
A. Huysseune
C. Winkler
Introduction
322(1)
1 A Fresh View on the Teleost Skeleton and Its Special Characters
323(4)
2 Analyzing Skeletal Phenotypes of Small Fish
327(5)
3 Mutant and Transgenic Fish Open New Directions in Skeletal Research
332(2)
4 Genetic Phenocopies of Human Skeletal Diseases
334(1)
5 Lifelong Tooth Replacement
335(12)
Concluding Remarks
336(1)
Acknowledgments
337(1)
References
337(10)
Chapter 14 Muscular Dystrophy Modeling in Zebrafish
347(36)
M. Li
K.J. Hromowyk
S.L. Amacher
P.O. Currie
Introduction
348(2)
1 Muscular Dystrophies and the Dystrophin-Associated Glycoprotein Complex
350(4)
2 Skeletal Muscle Properties in Zebrafish
354(7)
3 Models of Muscular Dystrophy in Zebrafish
361(5)
4 Small Molecule Screens
366(17)
Conclusions
368(1)
References
369(14)
PART VI CENTRAL AND SENSORY NERVOUS SYSTEMS
Chapter 15 Analysis of Myelinated Axon Formation in Zebrafish
383(32)
M. D'Rozario
K.R. Monk
S.C. Petersen
Introduction
384(2)
1 Visualization of Myelinating Glia in Zebrafish
386(6)
2 Genetic Analysis of Myelin Development in Zebrafish
392(6)
3 Pharmacological Manipulation of Myelinated Axons in Zebrafish
398(3)
4 Plasticity, Maintenance, and Regeneration of Myelinated Axons in Zebrafish
401(14)
Conclusions
404(1)
Acknowledgments
404(1)
References
404(11)
Chapter 16 Zebrafish Models of Human Eye and Inner Ear Diseases
415(56)
B. Blanco-Sanchez
A. Clement
J.B. Phillips
M. Westerfield
Introduction
416(3)
1 Zebrafish Models of Eye Disease
419(4)
2 Zebrafish Models of Ear Disease
423(9)
3 Zebrafish Models of Syndromes Affecting Eye and/or Ear
432(39)
Conclusion
445(1)
References
446(25)
PART VII CANCER
Chapter 17 A Zebrafish Xenograft Model for Studying Human Cancer Stem Cells in Distant Metastasis and Therapy Response
471(26)
L. Chen
A. Groenewoud
C. Tulotta
E. Zoni
M. Kruithof-de Julio
G. van der Horst
G. van der Pluijm
B. Ewa Snaar-Jagalska
Introduction
472(2)
1 Establishment of Human Cancer Stem Cells Xenograft Model
474(6)
2 Analysis of Interaction Between Cancer Stem/Progenitor-Like Cells and Microenvironment
480(6)
3 Genetic and Chemical Targeting of Tumor-Stroma Interactions in Cancer Stem/Progenitor-Like Cells---Xenograft
486(11)
Conclusion
489(1)
Acknowledgments
490(1)
References
490(7)
Chapter 18 Zebrafish as a Model for Von Hippel Lindau and Hypoxia-inducible Factor Signaling
497(28)
H.R. Kim
D. Greenald
A. Vettori
E. Markham
K. Santhakumar
F. Argenton
F. van Eeden
Introduction
498(1)
1 Hypoxic Signaling
499(1)
2 Hypoxic Signaling: Overview of the Zebrafish Orthologues
500(1)
3 The Zebrafish HIF Genes
500(1)
4 HIF Protein Expression
501(3)
5 The HIF Hydroxylases
504(1)
6 The VHL Genes
504(1)
7 HIF Binding Sites in the Genome
505(1)
8 Hypoxic/HIF Target Gene Comparison
506(1)
9 Hypoxic Signaling Reporters in Zebrafish
507(1)
10 Links Between HIF and the Circadian Clock
507(1)
11 Zebrafish VHL Mutants as Models of Hif Hyperactivation
508(1)
12 Hematopoietic and Angiogenic Phenotypes in VHL Mutants
509(1)
13 VHL/HIF Effects on Metabolism
510(1)
14 Kidney Defects in VHL Mutants and Cancer
511(1)
15 Links Between VHL HIF and P53
512(13)
Appendix A Supplementary data
514(1)
References
514(11)
Chapter 19 Discovering Novel Oncogenic Pathways and New Therapies Using Zebrafish Models of Sarcoma
525(38)
M.N. Hayes
D.M. Langenau
Introduction
526(3)
1 Rhabdomyosarcoma
529(8)
2 Malignant Peripheral Nerve Sheath Tumors
537(6)
3 Ewing's Sarcoma
543(3)
4 Chordoma
546(3)
5 Hemangiosarcoma
549(2)
6 Liposarcoma
551(3)
7 Future Perspectives and Opportunities
554(9)
References
554(9)
Chapter 20 Zebrafish Models of Leukemia
563(30)
S. He
C.-B. Jing
A.T. Look
1 T-Cell Acute Lymphoblastic Leukemia
564(8)
2 B-Cell Acute Lymphoblastic Leukemia
572(2)
3 Myeloid Malignancies
574(19)
Conclusions
581(1)
References
581(12)
Chapter 21 Investigating Microglia-Brain Tumor Cell Interactions In Vivo in the Larval Zebrafish Brain
593(36)
K.R. Astell
D. Sieger
Introduction
594(4)
1 Methods
598(22)
2 Summary
620(9)
Acknowledgments
620(1)
References
621(8)
PART VIII TRANSPLANTATION
Chapter 22 Transplantation in Zebrafish
629(22)
J.M. Gansner
M. Dang
M. Ammerman
L.I. Zon
Introduction
630(1)
1 Rationale
631(3)
2 Methods
634(7)
3 Discussion
641(10)
Acknowledgments
643(1)
References
643(8)
PART IX CHEMICAL SCREENING
Chapter 23 Chemical Screening in Zebrafish for Novel Biological and Therapeutic Discovery
651(30)
D.S. Wiley
S.E. Redfield
L.I. Zon
Introduction
652(4)
1 Rationale
656(1)
2 Materials and Methods
656(13)
3 Discussion/caveats
669(12)
Summary
671(1)
Acknowledgments
672(1)
References
672(9)
Index 681(28)
Volumes in Series 709
Professor of Biochemistry and Marine Biology at Northeastern University, promoted 1996. Joined Northeastern faculty in 1987. Previously a faculty member in Dept. of Biochemistry at the University of Mississippi Medical Center, 1983-1987.Principal Investigator in the U.S. Antarctic Program since 1984. Twelve field seasons "on the ice" since 1981. Research conducted at Palmer Station, Antarctica, and McMurdo Station, Antarctica.Research areas: Biochemical, cellular, and physiological adaptation to low and high temperatures. Structure and function of cytoplasmic microtubules and microtubule-dependent motors from cold-adapted Antarctic fishes. Regulation of tubulin and globin gene expression in zebrafish and Antarctic fishes. Role of microtubules in morphogenesis of the zebrafish embryo. Developmental hemapoiesis in zebrafish and Antarctic fishes. UV-induced DNA damage and repair in Antarctic marine organisms. Grousbeck Professor of Pediatrics, Boston Children's Hospital / HHMI, Boston, MA, USA Professor, Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, USA