Introduction |
|
1 | (5) |
|
1 The Riemann Zeta Function |
|
|
6 | (14) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (2) |
|
1.4 Formal Dirichlet series |
|
|
10 | (2) |
|
1.5 Extension to R(s) > 0; the pole and residue at s = 1 |
|
|
12 | (1) |
|
1.6 The functional equation |
|
|
13 | (2) |
|
1.7 The Riemann hypothesis |
|
|
15 | (2) |
|
1.8 Results and approaches |
|
|
17 | (1) |
|
1.9 The prime number theorem |
|
|
18 | (1) |
|
1.10 Dedekind zeta functions |
|
|
18 | (2) |
|
2 The Zeta Function Of A Z-Scheme Of Finite Type |
|
|
20 | (24) |
|
|
20 | (1) |
|
2.2 Elementary properties of ξ (X, s) |
|
|
21 | (3) |
|
2.3 The case of a curve over a finite field: the statement |
|
|
24 | (1) |
|
2.4 Strategy of the proof of Theorem 2.7 |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.6 The Riemann-Roch theorem |
|
|
26 | (1) |
|
2.7 Rationality and the functional equation (F.K. Schmidt) |
|
|
27 | (2) |
|
2.8 The Riemann hypothesis: reduction to (2.4.1) (Hasse, Schmidt, Weil) |
|
|
29 | (1) |
|
2.9 The Riemann hypothesis: Weil's first proof |
|
|
29 | (11) |
|
|
40 | (1) |
|
2.11 The Lang--Weil theorems |
|
|
41 | (3) |
|
|
44 | (29) |
|
3.1 From curves to abelian varieties |
|
|
44 | (8) |
|
3.2 The Riemann hypothesis for an abelian variety |
|
|
52 | (2) |
|
|
54 | (3) |
|
|
57 | (3) |
|
3.5 Formal properties of a Weil cohomology |
|
|
60 | (8) |
|
3.6 Proofs of some of the Weil conjectures |
|
|
68 | (3) |
|
|
71 | (2) |
|
4 L-Functions From Number Theory |
|
|
73 | (31) |
|
4.1 Dirichlet L-functions |
|
|
73 | (3) |
|
4.2 The Dirichlet theorems |
|
|
76 | (8) |
|
4.3 First generalisations: Hecke L-functions |
|
|
84 | (10) |
|
4.4 Second generalisation: Artin L-functions |
|
|
94 | (7) |
|
4.5 The marriage of Artin and Hecke |
|
|
101 | (1) |
|
4.6 The constant of the functional equation |
|
|
102 | (2) |
|
5 L-Functions From Geometry |
|
|
104 | (38) |
|
5.1 "Hasse--Weil" zeta functions |
|
|
104 | (4) |
|
|
108 | (2) |
|
5.3 L-functions of l-adic sheaves |
|
|
110 | (10) |
|
5.4 The functional equation in characteristic p |
|
|
120 | (9) |
|
5.5 The theory of weights |
|
|
129 | (4) |
|
5.6 The completed L-function of a smooth projective variety over a global field |
|
|
133 | (9) |
|
|
142 | (26) |
|
|
142 | (2) |
|
6.2 Adequate equivalence relations |
|
|
144 | (2) |
|
6.3 The category of correspondences |
|
|
146 | (1) |
|
6.4 Pure effective motives |
|
|
147 | (1) |
|
|
148 | (2) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
152 | (2) |
|
6.9 Motivic theory of weights (pure case) |
|
|
154 | (3) |
|
6.10 Example: Artin motives |
|
|
157 | (1) |
|
6.11 Example: h1 of abelian varieties |
|
|
158 | (1) |
|
6.12 The zeta function of an endomorphism |
|
|
159 | (2) |
|
6.13 The case of a finite base field |
|
|
161 | (3) |
|
|
164 | (2) |
|
|
166 | (2) |
Appendix A Karoubian and monoidal categories |
|
168 | (13) |
Appendix B Triangulated categories, derived categories, and perfect complexes |
|
181 | (14) |
Appendix C List of exercises |
|
195 | (2) |
Bibliography |
|
197 | (10) |
Index |
|
207 | |