Atnaujinkite slapukų nuostatas

El. knyga: 4D Printing: Fundamentals and Applications

Edited by (Professor and Head, Department of Mechanical Engineering, National Institute of Technical Teacher Training and Research, Chandigarh, India)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

4D Printing: Fundamentals and Applications explores both autonomic and non-autonomic systems with different stimulus such as temperature, current, moisture, light and sound. In addition, the fifth dimensional aspect using more than one stimulus is outlined for additive manufacturing processes. The book presents both an introduction to the basic understanding of hybrid processes and explores the physics behind the process (in the form of derivation and numerical problems). For the field engineer, applicable codes and standards for each hybrid process are provided. Lastly, case studies are included in each section to provide the reader with a model to explore future research directions.
  • Begins with the fundamentals of the hybrid additive manufacturing process
  • Presents a discussion of the physics behind smart material functioning in hybrid additive manufacturing
  • Includes real world case studies on 4D and 5D printing, as well as a look at future research dimensions
List of contributors
ix
Preface xi
Additive manufacturing for 4D applications xiii
1 On 3D printed multiblended and hybrid-blended poly(lactic)acid composite matrix for self-assembly
1(16)
Sudhir Kumar
Rupinder Singh
T.P. Singh
Ajay Batish
1.1 Introduction
1(2)
1.2 3D printing of hybrid and multiblended matrix of poly(lactic)acid: a case study
3(1)
1.2.1 Preparation of hybrid-blended matrix and its printing on fused deposition modeling platform
3(1)
1.3 Preparation of multimaterial matrix of poly(lactic)acid and its printing on fused deposition modeling platform
3(1)
1.4 Comparative results of multimaterial and hybrid-blended matrix of poly(lactic)acid
4(2)
1.5 Mechanical properties of multimaterial and hybrid-blended matrix
6(1)
1.5.1 Tensile and flexural properties
6(1)
1.6 Morphological properties
7(5)
1.6.1 Scanning electron microscopy analysis
7(2)
1.6.2 Fourier transformation infrared spectroscopy analysis
9(3)
1.7 Vibration sample magnetometery results
12(1)
1.8 Summary
12(5)
References
13(4)
2 Graphene-reinforced acrylonitrile butadiene styrene composite as smart material for 4D applications
17(18)
Vinay Kumar
Rupinder Singh
I.P.S. Ahuja
2.1 Introduction
17(3)
2.2 Research gap and problem formulation
20(1)
2.3 Experimentation
21(4)
2.3.1 Chemical-assisted mechanical Wending and TSE of G-reinforced ABS
22(2)
2.3.2 Prestraining G-reinforced ABS composite on universal testing machine
24(1)
2.3.3 Vibration sample magnetometry and piezoelectric analysis
25(1)
2.4 Result and discussion
25(10)
2.4.1 Shape memory effect in G-reinforced ABS composites
25(1)
2.4.2 Vibration sample magnetometry and piezoelectric analysis
25(2)
2.4.3 Morphological analysis
27(5)
Acknowledgment
32(1)
References
32(3)
3 Two-way programming of secondary recycled poly(lactic)acid composite matrix using magnetic field as stimulus
35(16)
Sudhir Kumar
Rupinder Singh
T.P. Singh
Ajay Batish
3.1 Introduction
35(2)
3.2 Two-way programming of secondary recycled poly(lactic)acid composite: a case study
37(1)
3.3 Materials and method
37(1)
3.4 Result and discussion
38(6)
3.4.1 Mechanical testing results
38(1)
3.4.2 Vibration sample magnetometery analysis
39(1)
3.4.3 Statistical control of magnetic properties of poly(lactic)acid composites
40(1)
3.4.4 Porosity analysis
41(1)
3.4.5 3D surface rendering and surface roughness analysis
41(3)
3.5 Studies reported at international level
44(1)
3.6 Summary
45(6)
Annex. 1
46(4)
References
50(1)
4 3D printed graphene-reinforced polyvinylidene fluoride composite for piezoelectric properties
51(16)
Vinay Kumar
Rupinder Singh
I.P.S. Ahuja
4.1 Introduction
51(3)
4.2 Research gap and problem formulation
54(1)
4.3 Experimentation
55(4)
4.3.1 Chemical-assisted mechanical blended of PVDF-graphene composite
56(1)
4.3.2 Twin screw extruder and 3D printing of PVDF-graphene
57(1)
4.3.3 Piezoelectric testing
57(1)
4.3.4 Vibration sample magnetometry analysis
57(2)
4.4 Results and discussion
59(5)
4.4.1 Thermal, piezoelectric, and vibration sample magnetometry analysis
59(2)
4.4.2 Morphological analysis
61(3)
4.5 Summary
64(3)
Acknowledgments
65(1)
References
65(2)
5 On characterization of rechargeable, flexible electrochemical energy storage device
67(22)
Kamaljit Singh Boparai
Abhishek Kumar
Rupinder Singh
5.1 Introduction
67(4)
5.2 Experimentation
71(15)
5.2.1 Material selection
71(7)
5.2.2 Sample preparation
78(1)
5.2.3 Sample processing
78(1)
5.2.4 Materials characterization
79(7)
5.3 Conclusion
86(3)
Acknowledgment
87(1)
References
87(2)
6 On dual/multimaterial composite matrix for smart structures: a case study of ABS-PLA, HIPS-PLA-ABS
89(14)
Rupinder Singh
Sudhir Kumar
Ranvijay Kumar
6.1 Introduction
89(2)
6.2 On dual-material 3D printing of different combination of layers: a case study
91(3)
6.3 Thumb rule derived from the case study
94(2)
6.4 Validation of thumb rule
96(2)
6.4.1 Case study for validation of thumb rule from dual-material 3D printing on 3D printed three different material combinations of ABS/PLA and high-impact polystyrene
96(2)
6.4.2 Proposed best and worst condition while considering NoC, NoNC, and other input parameters
98(1)
6.5 Summary
98(5)
References
100(3)
7 PVDF-graphene-BaTi03 composite for 4D applications
103(18)
Ravinder Sharma
Rupinder Singh
Ajay Batish
7.1 Introduction
103(8)
7.1.1 Experimentation
108(3)
7.2 Results and discussion
111(6)
7.2.1 Dimensional analysis
113(2)
7.2.2 3D printing of piezoelectric sensor
115(2)
7.3 Conclusion
117(4)
References
117(4)
8 Hydrothermal stimulus for 4D capabilities of PA6-AI-AI203 composite
121(26)
Kamaljit Singh Boparai
Rupinder Singh
8.1 Introduction
121(5)
8.2 Experimentation
126(10)
8.2.1 Materials
126(1)
8.2.2 Sample preparation
126(1)
8.2.3 Sample processing
126(6)
8.2.4 Materials characterization
132(4)
8.3 Results and discussion
136(7)
8.3.1 Rheological measurements
136(2)
8.3.2 Tensile testing
138(4)
8.3.3 Scanning electron microscopy
142(1)
8.4 Conclusions
143(4)
Acknowledgement
144(1)
References
144(3)
9 On PLA-ZnO composite matrix for shape memory effect
147(14)
Ranvijay Kumar
Rupinder Singh
Vinay Kumar
Pawan Kumar
9.1 Introduction
147(4)
9.2 Materials and methods
151(1)
9.3 Experimentation
152(2)
9.3.1 Twin screw compounding
152(1)
9.3.2 Shape memory investigation
152(2)
9.4 Results and discussion
154(4)
9.5 Summary
158(3)
Acknowledgments
158(1)
References
158(3)
Index 161
Dr. Rupinder Singh is currently Professor and Head of the Department of Mechanical Engineering, National Institute of Technical Teacher Training and Research, Chandigarh. He received a Ph.D. in Mechanical Engineering from the Thapar Institute of Engineering and Technology Patiala. His research interests are additive manufacturing, composite filament processing, rapid tooling, metal casting and plastic solid waste management