Atnaujinkite slapukų nuostatas

El. knyga: Artificial Intelligence in Marketing

Editor-in-chief (Georgia Institute of Technology, USA), Edited by (Yale University, USA), Edited by (Columbia University, USA)
  • Formatas: PDF+DRM
  • Serija: Review of Marketing Research
  • Išleidimo metai: 13-Mar-2023
  • Leidėjas: Emerald Publishing Limited
  • Kalba: eng
  • ISBN-13: 9781802628753
  • Formatas: PDF+DRM
  • Serija: Review of Marketing Research
  • Išleidimo metai: 13-Mar-2023
  • Leidėjas: Emerald Publishing Limited
  • Kalba: eng
  • ISBN-13: 9781802628753

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Review of Marketing Research pushes the boundaries of marketingbroadening the marketing concept to make the world a better place.



Here, leading scholars explore how marketing is currently shaping, and being shaped by, the evolution of Artificial Intelligence (AI). Topics covered include the effects of AI on: economics; personalisation; pricing; content generation; the identification, structuring, and prioritization of customer needs; customer feedback; Natural Language Processing; image analytics; deep learning; and the anthropomorphism of AI, such as in virtual assistants and chatbots.



Each chapter provides thought provoking discussions which will be relevant to researchers, professionals, and students.
Introduction. The State of AI Research in Marketing: Active, Fertile,
and Ready for Explosive Growth; K. Sudhir and Olivier Toubia

Chapter
1. The Economics of Artificial Intelligence: A Marketing Perspective;
MengQi (Annie) Ding and Avi Goldfarb

Chapter
2. AI and Personalization; Omid Rafieian and Hema Yoganarasimhan

Chapter
3. Artificial Intelligence and Pricing; Diego Aparicio and Kanishka
Misra

Chapter
4. Leveraging AI for Content Generation: A Customer Equity
Perspective; David Schweidel, Martin Reisenbichler, Thomas Reutterer, and
Kunpeng Zhang

Chapter
5. Artificial Intelligence and User-Generated Data are Transforming
how Firms Come to Understand Customer Needs; John R. Hauser, Zelin Li, and
Chengfeng Mao 

Chapter
6. AI Applications to Customer Feedback Research: A Review; Peter S.
Lee, Ishita Chakraborty, and Shrabastee Banerjee

Chapter
7. Natural Language Processing in Marketing; Jochen Hartmann and Oded
Netzer

Chapter
8. Marketing through the Machines Eyes: Image Analytics and
Interpretability; Shunyuan Zhang, Flora Feng, and Kannan Srinivasan

Chapter
9. Deep Learning in Marketing: A Review and Research Agenda; Xiao
Liu

Chapter
10. Anthropomorphism in Artificial Intelligence: A Review of
Empirical Work Across Domains and Insights for Future Research; Ertugrul
Uysal, Sascha Alavi and Valéry Bezenēon
Naresh K. Malhotra is Senior Fellow, Georgia Tech CIBER, and Regents Professor Emeritus, Scheller College of Business, Georgia Institute of Technology (Georgia Tech), USA.



K. Sudhir is James L. Frank 32 Professor of Marketing at the Yale School of Management. His recent research uses AI methods such as NLP, video and music analytics to address questions on advertising, salesforce hiring, online reviews, bias and privacy.



Olivier Toubia is the Glaubinger Professor of Business at Columbia Business School. His research combines methods from social sciences and data science, in order to study human processes such as motivation, choice, and creativity.