Atnaujinkite slapukų nuostatas

Cohen-Macaulay Representations [Kietas viršelis]

  • Formatas: Hardback, 367 pages, weight: 820 g
  • Serija: Mathematical Surveys and Monographs
  • Išleidimo metai: 30-May-2012
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821875817
  • ISBN-13: 9780821875810
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 367 pages, weight: 820 g
  • Serija: Mathematical Surveys and Monographs
  • Išleidimo metai: 30-May-2012
  • Leidėjas: American Mathematical Society
  • ISBN-10: 0821875817
  • ISBN-13: 9780821875810
Kitos knygos pagal šią temą:
This book is a comprehensive treatment of the representation theory of maximal Cohen-Macaulay (MCM) modules over local rings. This topic is at the intersection of commutative algebra, singularity theory, and representations of groups and algebras. Two introductory chapters treat the Krull-Remak-Schmidt Theorem on uniqueness of direct-sum decompositions and its failure for modules over local rings. Chapters 3-10 study the central problem of classifying the rings with only finitely many indecomposable MCM modules up to isomorphism, i.e., rings of finite CM type. The fundamental material--ADE/simple singularities, the double branched cover, Auslander-Reiten theory, and the Brauer-Thrall conjectures--is covered clearly and completely. Much of the content has never before appeared in book form. Examples include the representation theory of Artinian pairs and Burban-Drozd's related construction in dimension two, an introduction to the McKay correspondence from the point of view of maximal Cohen-Macaulay modules, Auslander-Buchweitz's MCM approximation theory, and a careful treatment of nonzero characteristic. The remaining seven chapters present results on bounded and countable CM type and on the representation theory of totally reflexive modules.
Preface xi
Chapter 1 The Krull-Remak-Schmidt Theorem 1(12)
1 KRS in an additive category
1(5)
2 KRS over Henselian rings
6(1)
3 R-modules vs. R-modules
7(2)
4 Exercises
9(4)
Chapter 2 Semigroups of Modules 13(16)
1 Krull monoids
14(3)
2 Realization in dimension one
17(6)
3 Realization in dimension two
23(3)
4 Flat local homomorphisms
26(1)
5 Exercises
27(2)
Chapter 3 Dimension Zero 29(12)
1 Artinian rings with finite Cohen-Macaulay type
29(3)
2 Artinian pairs
32(7)
3 Exercises
39(2)
Chapter 4 Dimension One 41(20)
1 Necessity of the Drozd-Roiter conditions
42(3)
2 Sufficiency of the Drozd-Roiter conditions
45(5)
3 ADE singularities
50(2)
4 The analytically ramified case
52(2)
5 Multiplicity two
54(2)
6 Ranks of indecomposable MCM modules
56(1)
7 Why MCM modules?
57(1)
8 Exercises
58(3)
Chapter 5 Invariant Theory 61(20)
1 The skew group ring
61(4)
2 The endomorphism algebra
65(6)
3 Group representations and the McKay-Gabriel quiver
71(6)
4 Exercises
77(4)
Chapter 6 Kleinian Singularities and Finite CM Type 81(28)
1 Invariant rings in dimension two
81(2)
2 Kleinian singularities
83(8)
3 McKay-Gabriel quivers of the Kleinian singularities
91(6)
4 Geometric McKay correspondence
97(9)
5 Exercises
106(3)
Chapter 7 Isolated Singularities and Dimension Two 109(14)
1 Miyata's theorem
109(4)
2 Isolated singularities
113(4)
3 Two-dimensional CM rings of finite CM type
117(3)
4 Exercises
120(3)
Chapter 8 The Double Branched Cover 123(18)
1 Matrix factorizations
123(5)
2 The double branched cover
128(5)
3 Knorrer's periodicity
133(6)
4 Exercises
139(2)
Chapter 9 Hypersurfaces with Finite CM Type 141(22)
1 Simple singularities
141(3)
2 Hypersurfaces in good characteristics
144(6)
3 Gorenstein rings of finite CM type
150(1)
4 Matrix factorizations for the Kleinian singularities
151(8)
5 Bad characteristics
159(1)
6 Exercises
160(3)
Chapter 10 Ascent and Descent 163(12)
1 Descent
163(1)
2 Ascent to the completion
164(6)
3 Ascent along separable field extensions
170(2)
4 Equicharacteristic Gorenstein singularities
172(1)
5 Exercises
173(2)
Chapter 11 Auslander-Buchweitz Theory 175(28)
1 Canonical modules
175(4)
2 MCM approximations and FID hulls
179(10)
3 Numerical invariants
189(5)
4 The index and applications to finite CM type
194(6)
5 Exercises
200(3)
Chapter 12 Totally Reflexive Modules 203(14)
1 Stable Hom and Auslander transpose
203(4)
2 Complete resolutions
207(2)
3 Totally reflexive modules
209(6)
4 Exercises
215(2)
Chapter 13 Auslander-Reiten Theory 217(24)
1 AR sequences
217(7)
2 AR quivers
224(4)
3 Examples
228(10)
4 Exercises
238(3)
Chapter 14 Countable Cohen-Macaulay Type 241(26)
1 Structure
241(3)
2 Burban-Drozd triples
244(8)
3 Hypersurfaces of countable CM type
252(8)
4 Other examples
260(3)
5 Exercises
263(4)
Chapter 15 The Brauer-Thrall Conjectures 267(20)
1 The Harada-Sai lemma
268(2)
2 Faithful systems of parameters
270(6)
3 Proof of Brauer-Thrall I
276(4)
4 Brauer-Thrall II
280(5)
5 Exercises
285(2)
Chapter 16 Finite CM Type in Higher Dimensions 287(10)
1 Two examples
287(6)
2 Classification for homogeneous CM rings
293(2)
3 Exercises
295(2)
Chapter 17 Bounded CM Type 297(12)
1 Hypersurface rings
297(2)
2 Dimension one
299(4)
3 Descent in dimension one
303(4)
4 Exercises
307(2)
Appendix A Basics and Background 309(12)
1 Depth, syzygies, and Serre's conditions
309(4)
2 Multiplicity and rank
313(4)
3 Henselian rings
317(4)
Appendix B Ramification Theory 321(20)
1 Unramified homomorphisms
321(5)
2 Purity of the branch locus
326(9)
3 Galois extensions
335(6)
Bibliography 341(14)
Index 355