Series Preface |
|
xiii | |
Preface |
|
xv | |
Authors |
|
xvii | |
|
1 Fundamentals of Electric Capacitors |
|
|
1 | (36) |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.2 Electric Charge, Electric Field, and Electric Potential and Their Implications for Capacitor Cell Voltage |
|
|
2 | (4) |
|
|
2 | (2) |
|
1.2.2 Electric Field and Potential |
|
|
4 | (1) |
|
1.2.3 Implication of Electric Potential in Capacitor Cell Voltage |
|
|
5 | (1) |
|
1.3 Capacitance Definition and Calculation |
|
|
6 | (9) |
|
1.3.1 Dielectric Materials and Constants |
|
|
9 | (2) |
|
1.3.1.1 Dielectric Polarization Mechanisms |
|
|
11 | (1) |
|
1.3.1.2 Ceramic Dielectrics and Their Capacitors |
|
|
11 | (1) |
|
1.3.1.3 Electrolytic Dielectrics and Their Capacitors |
|
|
12 | (1) |
|
1.3.1.4 Paper and Polymer Dielectrics and Their Capacitors |
|
|
13 | (1) |
|
1.3.1.5 Classification of Dielectric Materials |
|
|
13 | (2) |
|
1.4 Capacitor Charging and Recharging Processes |
|
|
15 | (5) |
|
|
15 | (2) |
|
1.4.2 Charging of Capacitor: RC Time |
|
|
17 | (1) |
|
1.4.3 Discharge of Capacitor |
|
|
18 | (2) |
|
1.5 Energy Storage in Capacitor |
|
|
20 | (1) |
|
1.6 Capacitor Containing Electrical Circuits and Corresponding Calculation |
|
|
21 | (11) |
|
|
21 | (1) |
|
|
21 | (2) |
|
|
23 | (1) |
|
1.6.4 Resistor--Inductor Circuits |
|
|
23 | (2) |
|
1.6.5 Inductor--Capacitor Circuits |
|
|
25 | (1) |
|
1.6.5 Resistor--Inductor--Capacitor Circuits |
|
|
26 | (1) |
|
1.6.6 Resistive, Capacitive, and Inductive Loads for AC Circuits |
|
|
27 | (1) |
|
1.6.6.1 Series Resistor--Inductor--Capacitor Circuit |
|
|
28 | (3) |
|
1.6.6.2 RLC Circuits Having Other R, L, and C Combinations |
|
|
31 | (1) |
|
1.7 Types and Structures of Capacitors |
|
|
32 | (2) |
|
|
32 | (1) |
|
1.7.2 Variable Capacitors |
|
|
32 | (1) |
|
|
33 | (1) |
|
1.7.4 High-Voltage Capacitors |
|
|
33 | (1) |
|
1.7.5 Interference-Suppression Capacitors |
|
|
33 | (1) |
|
1.7.6 Ferrodielectric Capacitors |
|
|
34 | (1) |
|
1.7.7 Polar Polymer Dielectric Capacitors |
|
|
34 | (1) |
|
1.7.8 Linear and Nonlinear Capacitors |
|
|
34 | (1) |
|
|
34 | (3) |
|
|
35 | (2) |
|
2 Fundamentals of Electrochemical Double-Layer Supercapacitors |
|
|
37 | (62) |
|
|
37 | (1) |
|
2.2 Electrode and Electrolyte Interfaces and Their Capacitances |
|
|
38 | (16) |
|
2.2.1 Electric Double-Layer at Interface of Electrode and Electrolyte Solution |
|
|
39 | (6) |
|
2.2.2 Double-Layer Net Charge Density by Gouy--Chapman--Stern (GCS) Modeling |
|
|
45 | (2) |
|
2.2.3 Theoretical Differential Capacitance of Electric Double-Layer |
|
|
47 | (1) |
|
2.2.4 Differential Capacitance of Entire Double-Layer |
|
|
48 | (2) |
|
2.2.5 Potential Drop Distribution within Electric Double-Layer |
|
|
50 | (1) |
|
2.2.6 Factors Affecting Double-Layer Capacitance |
|
|
51 | (1) |
|
2.2.7 Specific Adsorption of Ions and Effect on Double-Layer |
|
|
52 | (2) |
|
2.3 Electrode Potential and Double-Layer Potential Windows Using Different Electrode Materials and Electrolytes |
|
|
54 | (4) |
|
2.3.1 Electrode Potential |
|
|
54 | (2) |
|
2.3.2 Double-Layer Potential Ranges or Windows |
|
|
56 | (2) |
|
2.4 Capacitance of Porous Carbon Materials |
|
|
58 | (4) |
|
2.4.1 Carbon Particles and Their Associated Electrode Layers |
|
|
59 | (2) |
|
2.4.2 Capacitances of Porous Carbon Materials and Their Associated Electrode Layers |
|
|
61 | (1) |
|
2.5 Electrochemical Double-Layer Supercapacitors |
|
|
62 | (17) |
|
2.5.1 Structure and Capacitance |
|
|
62 | (2) |
|
2.5.2 Equivalent Series Resistance (ESR) |
|
|
64 | (1) |
|
2.5.2.1 Thermal Degradation from ESR |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.5.3.1 Self Discharge through Leakage Mechanisms |
|
|
67 | (2) |
|
2.5.4 Supercapacitor Charging and Discharging |
|
|
69 | (1) |
|
2.5.4.1 Charging at Constant Cell Voltage |
|
|
69 | (1) |
|
2.5.4.2 Charging at Constant Cell Current |
|
|
70 | (2) |
|
2.5.4.3 Discharging Supercapacitor Cell at Constant Resistance |
|
|
72 | (1) |
|
2.5.4.4 Discharging Supercapacitor Cell at Constant Voltage |
|
|
73 | (1) |
|
2.5.4.5 Discharging Supercapacitor Cell at Constant Current |
|
|
74 | (2) |
|
2.5.4.6 Charging and Discharging Curves at Constant Current |
|
|
76 | (3) |
|
2.5.4.7 AC Impedance Equivalent Circuit |
|
|
79 | (1) |
|
2.6 Energy and Power Densities of Electrochemical Supercapacitors |
|
|
79 | (10) |
|
|
79 | (2) |
|
|
81 | (5) |
|
2.6.3 Ragone Plot: Relationship of Energy Density and Power Density |
|
|
86 | (3) |
|
2.7 Supercapacitor Stacking |
|
|
89 | (2) |
|
|
89 | (1) |
|
2.7.2 Stacking in Parallel |
|
|
90 | (1) |
|
2.8 Double-Layer Supercapacitors versus Batteries |
|
|
91 | (2) |
|
2.9 Applications of Supercapacitors |
|
|
93 | (2) |
|
|
95 | (4) |
|
|
95 | (4) |
|
3 Fundamentals of Electrochemical Pseudocapacitors |
|
|
99 | (36) |
|
|
99 | (3) |
|
3.2 Electrochemical Pseudocapacitance of Electrode--Electrolyte Interface |
|
|
102 | (22) |
|
3.2.1 Fundamental Electrochemistry of Pseudocapacitance |
|
|
102 | (6) |
|
3.2.2 Pseudocapacitance Induced by Underpotential Deposition |
|
|
108 | (4) |
|
3.2.3 Pseudocapacitance Induced by Lithium Intercalation |
|
|
112 | (1) |
|
3.2.4 Pseudocapacitance Induced by Redox Couples |
|
|
113 | (1) |
|
3.2.4.1 Pseudocapacitance Induced by Dissolved Couples |
|
|
113 | (2) |
|
3.2.4.2 Pseudocapacitance Induced by Undissolved Redox Couples |
|
|
115 | (5) |
|
3.2.5 Pseudocapacitance Induced in Electrically Conducting Polymer (ECP) |
|
|
120 | (1) |
|
3.2.6 Coupling of Differential Double-Layer and Pseudocapacitance |
|
|
121 | (3) |
|
3.3 Electrochemical Impedance Spectroscopy and Equivalent Circuits |
|
|
124 | (2) |
|
3.4 Materials, Electrodes, and Cell Designs |
|
|
126 | (5) |
|
3.4.1 Electrode Materials |
|
|
126 | (3) |
|
3.4.2 Cell Designs (Symmetric versus Asymmetric) |
|
|
129 | (2) |
|
|
131 | (4) |
|
|
132 | (3) |
|
4 Components and Materials for Electrochemical Supercapacitors |
|
|
135 | (68) |
|
|
135 | (2) |
|
4.1.1 Traditional Capacitors |
|
|
135 | (1) |
|
4.1.2 Electrochemical Supercapacitors |
|
|
136 | (1) |
|
4.2 Anode and Cathode Structures and Materials |
|
|
137 | (43) |
|
4.2.1 Overview of Battery Functions and Materials |
|
|
137 | (5) |
|
4.2.2 Introducing Electrode Requirements for Electrochemical Supercapacitors |
|
|
142 | (1) |
|
4.2.3 Electrode Conductivity |
|
|
143 | (1) |
|
4.2.4 Surface Area for EDLC Design |
|
|
143 | (1) |
|
4.2.5 Pore Structure for EDLC Design |
|
|
144 | (2) |
|
4.2.6 Functionalization Effects on EDLCs |
|
|
146 | (4) |
|
4.2.7 Series Resistance in EDLC Design |
|
|
150 | (1) |
|
4.2.8 EDLC Electrode Materials |
|
|
151 | (1) |
|
4.2.8.1 Activated Carbons |
|
|
151 | (2) |
|
4.2.8.2 Templated Active Carbons |
|
|
153 | (3) |
|
|
156 | (4) |
|
|
160 | (1) |
|
|
161 | (4) |
|
4.2.8.6 Carbon Nanofibers |
|
|
165 | (1) |
|
4.2.9 Pseudocapacitive Materials |
|
|
166 | (1) |
|
|
166 | (1) |
|
4.2.9.2 Transition Metal Oxides |
|
|
167 | (4) |
|
4.2.9.3 Transition Metal Nitrides |
|
|
171 | (2) |
|
4.2.9.4 Conducting Polymers |
|
|
173 | (4) |
|
4.2.10 Asymmetric Structures |
|
|
177 | (3) |
|
4.3 Electrolyte Structures and Materials |
|
|
180 | (9) |
|
4.3.1 Electrolyte Overview |
|
|
180 | (1) |
|
4.3.1.1 Electrolyte Decomposition |
|
|
181 | (1) |
|
4.3.2 Aqueous Electrolytes |
|
|
182 | (1) |
|
4.3.3 Organic Electrolytes |
|
|
183 | (1) |
|
|
184 | (1) |
|
4.3.5 Solid State Polymer Electrolytes |
|
|
185 | (4) |
|
|
189 | (1) |
|
|
190 | (2) |
|
|
192 | (2) |
|
|
194 | (9) |
|
|
194 | (9) |
|
5 Electrochemical Supercapacitor Design, Fabrication, and Operation |
|
|
203 | (44) |
|
|
203 | (1) |
|
5.2 Design Considerations |
|
|
204 | (4) |
|
|
204 | (1) |
|
|
205 | (1) |
|
5.2.3 Lifetime and Cycle Charging |
|
|
205 | (2) |
|
|
207 | (1) |
|
5.2.5 Heat and Temperature Effects |
|
|
207 | (1) |
|
|
208 | (1) |
|
5.3 Single Cell Manufacturing |
|
|
208 | (8) |
|
5.3.1 Electrode Materials |
|
|
208 | (1) |
|
5.3.2 Electrode Fabrication |
|
|
209 | (1) |
|
5.3.3 Electrolyte Preparation |
|
|
209 | (1) |
|
5.3.4 Current Collector Preparation |
|
|
210 | (1) |
|
5.3.5 Single Cell Structure and Assembly |
|
|
210 | (2) |
|
|
212 | (1) |
|
5.3.5.2 Cylindrical Cells |
|
|
212 | (1) |
|
|
213 | (1) |
|
5.3.6 Considerations for Contact Area and Positioning |
|
|
214 | (2) |
|
5.4 Supercapacitor Stack Manufacturing and Construction |
|
|
216 | (3) |
|
5.4.1 Cell Stacking to Form Modules |
|
|
216 | (1) |
|
5.4.2 Utilizing Bipolar Design |
|
|
217 | (2) |
|
5.5 Voltage Cell Balancing |
|
|
219 | (2) |
|
|
220 | (1) |
|
5.5.1.1 Resistance Balancing |
|
|
220 | (1) |
|
5.5.1.2 Zener Diode Balancing |
|
|
221 | (1) |
|
|
221 | (1) |
|
5.6 Cell Aging and Voltage Decay |
|
|
221 | (3) |
|
|
224 | (2) |
|
|
226 | (14) |
|
5.8.1 Patents on Electrode Materials |
|
|
226 | (9) |
|
5.8.2 Patents on Electrolytes |
|
|
235 | (1) |
|
5.8.3 Patents on ES Designs |
|
|
235 | (5) |
|
5.9 Major Commercial ES Products |
|
|
240 | (5) |
|
|
245 | (2) |
|
|
245 | (2) |
|
6 Coupling with Batteries and Fuel Cells |
|
|
247 | (30) |
|
|
247 | (1) |
|
6.2 Coupling ES Systems with Other Energy Devices |
|
|
247 | (1) |
|
|
248 | (2) |
|
6.4 Supercapacitor Integration with Batteries |
|
|
250 | (5) |
|
6.4.1 ES--Battery Direct Coupling: Passive Control |
|
|
251 | (1) |
|
6.4.2 ES--Battery Indirect Coupling: Active Control |
|
|
252 | (2) |
|
|
254 | (1) |
|
6.5 Supercapacitor Integration with Fuel Cells |
|
|
255 | (2) |
|
6.6 System Modeling and Optimization |
|
|
257 | (15) |
|
6.6.1 Supercapacitor Modeling |
|
|
259 | (1) |
|
6.6.1.1 Classic and Advanced Equivalent Series Models |
|
|
260 | (1) |
|
6.6.1.2 Ladder Circuit Model |
|
|
261 | (1) |
|
6.6.1.3 Multifactor Electrical Model |
|
|
262 | (2) |
|
6.6.2 Polymer Electrolyte Membrane Fuel Cell Modeling |
|
|
264 | (1) |
|
6.6.3 Power Systems Modeling |
|
|
264 | (1) |
|
6.6.4 Optimization of Models |
|
|
265 | (3) |
|
6.6.5 Control and Optimization of ESS |
|
|
268 | (3) |
|
|
271 | (1) |
|
6.7 Improving Dynamic Response and Transient Stability |
|
|
272 | (2) |
|
|
274 | (3) |
|
|
274 | (3) |
|
7 Characterization and Diagnosis Techniques for Electrochemical Supercapacitors |
|
|
277 | (40) |
|
|
277 | (1) |
|
7.2 Electrochemical Cell Design and Fabrication |
|
|
278 | (4) |
|
7.2.1 Conventional Three-Electrode Cell Design and Fabrication |
|
|
278 | (1) |
|
7.2.2 Two-Electrode Test Cell Design and Assembly |
|
|
278 | (2) |
|
7.2.3 Differences between Three- and Two-Electrode Cell Supercapacitor Characterizations |
|
|
280 | (2) |
|
7.3 Cyclic Voltammetry (CV) |
|
|
282 | (9) |
|
7.3.1 Double-Layer Specific Capacitance Characterization Using Three-Electrode Cell |
|
|
284 | (3) |
|
7.3.2 Double-Layer Specific Capacitance Characterization Using Two-Electrode Test Cell |
|
|
287 | (1) |
|
7.3.3 Potential Scan Rate Effect on Specific Capacitance |
|
|
288 | (1) |
|
7.3.4 Pseudosupercapacitor Characterization by Cyclic Voltammetry |
|
|
289 | (2) |
|
7.4 Charging--Discharging Curve |
|
|
291 | (3) |
|
7.4.1 Capacitance, Maximum Energy and Power Densities, and Equivalent Series Resistance Measurements |
|
|
292 | (2) |
|
7.4.2 Cycle Life Measurement Using Charging--Discharging Curves |
|
|
294 | (1) |
|
7.5 Electrochemical Impedance Spectroscopy (EIS) |
|
|
294 | (10) |
|
7.5.1 Measurement and Instrumentation |
|
|
295 | (1) |
|
7.5.2 Equivalent Circuits |
|
|
295 | (7) |
|
7.5.3 Supercapacitor Data Simulation to Obtain Parameter Values |
|
|
302 | (2) |
|
7.6 Physical Characterization of Supercapacitor Materials |
|
|
304 | (7) |
|
7.6.1 Scanning Electron Microscopy (SEM) |
|
|
304 | (2) |
|
7.6.2 Transmission Electron Microscopy (TEM) |
|
|
306 | (1) |
|
7.6.3 X-Ray Diffraction (XRD) |
|
|
307 | (1) |
|
7.6.4 Energy-Dispersive X-Ray Spectroscopy (EDX) |
|
|
308 | (1) |
|
7.6.5 X-Ray Photoelectron Spectroscopy (XPS) |
|
|
308 | (1) |
|
7.6.6 Raman Spectroscopy (RS) |
|
|
309 | (1) |
|
7.6.7 Fourier Transform Infrared Spectroscopy (FTIR) |
|
|
310 | (1) |
|
7.7 Brunauer--Emmett--Teller (BET) Method |
|
|
311 | (1) |
|
|
312 | (5) |
|
|
312 | (5) |
|
8 Applications of Electrochemical Supercapacitors |
|
|
317 | (18) |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
318 | (3) |
|
|
321 | (2) |
|
8.5 Portable Energy Sources |
|
|
323 | (1) |
|
8.6 Power Quality Improvement |
|
|
324 | (2) |
|
8.7 Adjustable Speed Drives (ASDs) |
|
|
326 | (2) |
|
8.7.1 Energy Storage Options for Different ASD Power Ratings |
|
|
327 | (1) |
|
8.8 High Power Sensors and Actuators |
|
|
328 | (1) |
|
8.9 Hybrid Electric Vehicles |
|
|
328 | (2) |
|
8.10 Renewable and Off-Peak Energy Storage |
|
|
330 | (1) |
|
8.11 Military and Aerospace Applications |
|
|
331 | (1) |
|
|
332 | (3) |
|
|
332 | (3) |
|
9 Perspectives and Challenges |
|
|
335 | (14) |
|
|
335 | (1) |
|
|
336 | (1) |
|
9.3 Electrode Material Challenges |
|
|
337 | (6) |
|
|
337 | (1) |
|
9.3.2 Double-Layer Electrode Materials |
|
|
338 | (1) |
|
9.3.3 Pseudocapacitor Electrode Materials |
|
|
339 | (1) |
|
9.3.3.1 Transition Metal Oxides |
|
|
339 | (1) |
|
9.3.3.2 Conductive Polymers |
|
|
340 | (1) |
|
9.3.4 Composite Electrode Materials |
|
|
341 | (2) |
|
9.4 Electrolyte Innovations |
|
|
343 | (1) |
|
9.5 Development of Computational Tools |
|
|
343 | (1) |
|
9.6 Future Perspectives and Research Directions |
|
|
344 | (5) |
|
|
345 | (4) |
Index |
|
349 | |