Atnaujinkite slapukų nuostatas

El. knyga: Electronic Packaging Science and Technology

(National Chiao Tung University, Hsinchu, Taiwan, ROC), (National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC), (National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 14-Dec-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119418337
  • Formatas: EPUB+DRM
  • Išleidimo metai: 14-Dec-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119418337

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Must-have reference on electronic packaging technology!

The electronics industry is shifting towards system packaging technology due to the need for higher chip circuit density without increasing production costs.  Electronic packaging, or circuit integration, is seen as a necessary strategy to achieve a performance growth of electronic circuitry in next-generation electronics. With the implementation of novel materials with specific and tunable electrical and magnetic properties, electronic packaging is highly attractive as a solution to achieve denser levels of circuit integration.

The first part of the book gives an overview of electronic packaging and provides the reader with the fundamentals of the most important packaging techniques such as wire bonding, tap automatic bonding, flip chip solder joint bonding, microbump bonding, and low temperature direct Cu-to-Cu bonding. Part two consists of concepts of electronic circuit design and its role in low power devices, biomedical devices, and circuit integration. The last part of the book contains topics based on the science of electronic packaging and the reliability of packaging technology.

 

1 Introduction
1(16)
1.1 Introduction
1(2)
1.2 Impact of Moore's Law on Si Technology
3(1)
1.3 5G Technology and AI Applications
4(3)
1.4 3D IC Packaging Technology
7(4)
1.5 Reliability Science and Engineering
11(2)
1.6 The Future of Electronic Packaging Technology
13(1)
1.7 Outline of the Book
14(3)
References
15(2)
Part I
17(110)
2 Cu-to-Cu and Other Bonding Technologies in Electronic Packaging
19(42)
2.1 Introduction
19(1)
2.2 Wire Bonding
20(3)
2.3 Tape-Automated Bonding
23(3)
2.4 Flip-Chip Solder Joint Bonding
26(6)
2.5 Micro-Bump Bonding
32(3)
2.6 Cu-to-Cu Direct Bonding
35(16)
2.6.1 Critical Factors for Cu-to-Cu Bonding
36(3)
2.6.2 Analysis of Cu-to-Cu Bonding Mechanism
39(7)
2.6.3 Microstructures at the Cu-to-Cu Bonding Interface
46(5)
2.7 Hybrid Bonding
51(3)
2.8 Reliability - Electromigration and Temperature Cycling Tests
54(7)
Problems
56(1)
References
57(4)
3 Randomly-Oriented and (111) Uni-directionally-Oriented Nanotwin Copper
61(30)
3.1 Introduction
61(2)
3.2 Formation Mechanism of Nanotwin Cu
63(4)
3.3 In Situ Measurement of Stress Evolution During Nanotwin Deposition
67(2)
3.4 Electrodeposition of Randomly Oriented Nanotwinned Copper
69(2)
3.5 Formation of Unidirectionally (111)-oriented Nanotwin Copper
71(4)
3.6 Grain Growth in [ 111]-Oriented nt-Cu
75(2)
3.7 Uni-directional Growth of η-Cu6Sn5 in Microbumps on (111) Oriented nt-Cu
77(1)
3.8 Low Thermal-Budget Cu-to-Cu Bonding Using [ 111]-Oriented nt-Cu
78(5)
3.9 Nanotwin Cu RDL for Fanout Package and 3D IC Integration
83(8)
Problems
86(1)
References
87(4)
4 Solid-Liquid Interfacial Diffusion Reaction (SLID) Between Copper and Solder
91(14)
4.1 Introduction
91(2)
4.2 Kinetics of Scallop-Type IMC Growth in SLID
93(2)
4.3 A Simple Model for the Growth of Mono-Size Hemispheres
95(2)
4.4 Theory of Flux-Driven Ripening
97(3)
4.5 Measurement of the Nano-channel Width Between Two Scallops
100(1)
4.6 Extremely Rapid Grain Growth in Scallop-Type Cu6Sn5 in SLID
100(5)
Problems
102(1)
References
103(2)
5 Solid-State Reactions Between Copper and Solder
105(22)
5.1 Introduction
105(1)
5.2 Layer-Type Growth of IMC in Solid-State Reactions
106(5)
5.3 Wagner Diffusivity
111(2)
5.4 Kirkendall Void Formation in Cu3Sn
113(1)
5.5 Sidewall Reaction to Form Porous Cu3Sn in ν-Bumps
114(6)
5.6 Effect of Surface Diffusion on IMC Formation in Pillar-Type μ-Bumps
120(7)
Problems
124(1)
References
125(2)
Part II
127(64)
6 Essence of Integrated Circuits and Packaging Design
129(20)
6.1 Introduction
129(2)
6.2 Transistor and Interconnect Scaling
131(2)
6.3 Circuit Design and LSI
133(6)
6.4 System-on-Chip (SoC) and Multicore Architectures
139(1)
6.5 System-in-Package (SiP) and Package Technology Evolution
140(4)
6.6 3D IC Integration and 3D Silicon Integration
144(1)
6.7 Heterogeneous Integration: An Introduction
145(4)
Problems
146(1)
References
146(3)
7 Performance, Power, Thermal, and Reliability
149(24)
7.1 Introduction
149(2)
7.2 Field-Effect Transistor and Memory Basics
151(4)
7.3 Performance: A Race in Early IC Design
155(2)
7.4 Trend in Low Power
157(2)
7.5 Trade-off between Performance and Power
159(1)
7.6 Power Delivery and Clock Distribution Networks
160(3)
7.7 Low-Power Design Architectures
163(3)
7.8 Thermal Problems in IC and Package
166(2)
7.9 Signal Integrity and Power Integrity (SI/PI)
168(1)
7.10 Robustness: Reliability and Variability
169(4)
Problems
171(1)
References
172(1)
8 2.5D/3D System-in-Packaging Integration
173(18)
8.1 Introduction
173(1)
8.2 2.5DIC: Redistribution Layer (RDL) and TSV-Interposer
174(2)
8.3 2.5D IC: Silicon, Glass, and Organic Substrates
176(1)
8.4 2.5D IC: HBM on Silicon Interposer
177(1)
8.5 3D IC: Memory Bandwidth Challenge for High-Performance Computing
178(2)
8.6 3D IC: Electrical and Thermal TSVs
180(2)
8.7 3D IC: 3D-Stacked Memory and Integrated Memory Controller
182(1)
8.8 Innovative Packaging for Modern Chips/Chiplets
183(3)
8.9 Power Distribution for 3D IC Integration
186(1)
8.10 Challenge and Trend
187(4)
Problems
188(1)
References
188(3)
Part III
191(116)
9 Irreversible Processes in Electronic Packaging Technology
193(28)
9.1 Introduction
193(3)
9.2 Flow in Open Systems
196(2)
9.3 Entropy Production
198(8)
9.3.1 Electrical Conduction
199(2)
9.3.1.1 Joule Heating
201(2)
9.3.2 Atomic Diffusion
203(1)
9.3.3 Heat Conduction
203(2)
9.3.4 Conjugate Forces When Temperature Is a Variable
205(1)
9.4 Cross-Effects in Irreversible Processes
206(1)
9.5 Cross-Effect Between Atomic Diffusion and Electrical Conduction
207(4)
9.5.1 Electromigration and Stress-Migration in Al Strips
209(2)
9.6 Irreversible Processes in Thermomigration
211(4)
9.6.1 Thermomigration in Unpowered Composite Solder Joints
212(3)
9.7 Cross-Effect Between Heat Conduction and Electrical Conduction
215(6)
9.7.1 Seebeck Effect
216(2)
9.7.2 Peltier Effect
218(1)
Problems
219(1)
References
219(2)
10 Electromigration
221(28)
10.1 Introduction
221(1)
10.2 To Compare the Parameters in Atomic Diffusion and Electric Conduction
222(2)
10.3 Basic of Electromigration
224(7)
10.3.1 Electron Wind Force
225(2)
10.3.2 Calculation of the Effective Charge Number
227(1)
10.3.3 Atomic Flux Divergence Induced Electromigration Damage
228(2)
10.3.4 Back Stress in Electromigration
230(1)
10.4 Current Crowding and Electromigration in 3-Dimensional Circuits
231(12)
10.4.1 Void Formation in the Low Current Density Region
234(4)
10.4.2 Current Density Gradient Force in Electromigration
238(4)
10.4.3 Current Crowding Induced Pancake-Type Void Formation in Flip-Chip Solder Joints
242(1)
10.5 Joule Heating and Heat Dissipation
243(6)
10.5.1 Joule Heating and Electromigration
244(1)
10.5.2 Joule Heating on Mean-Time-to-Failure in Electromigration
245(1)
Problems
245(1)
References
246(3)
11 Thermomigration
249(8)
11.1 Introduction
249(1)
11.2 Driving Force of Thermomigration
249(1)
11.3 Analysis of Heat of Transport
250(3)
11.4 Thermomigration Due to Heat Transfer Between Neighboring Pairs of Powered and Unpowered Solder Joints
253(4)
Problems
255(1)
References
255(2)
12 Stress-Migration
257(24)
12.1 Introduction
257(1)
12.2 Chemical Potential in a Stressed Solid
258(2)
12.3 Stoney's Equation of Biaxial Stress in Thin Films
260(4)
12.4 Diffusional Creep
264(3)
12.5 Spontaneous Sn Whisker Growth at Room Temperature
267(10)
12.5.1 Morphology
267(4)
12.5.2 Measurement of the Driving Force to Grow a Sn Whisker
271(1)
12.5.3 Kinetics of Sn Whisker Growth
272(3)
12.5.4 Electromigration-Induced Sn Whisker Growth in Solder Joints
275(2)
12.6 Comparison of Driving Forces Among Electromigration, Thermomigration, and Stress-Migration
277(4)
12.6.1 Products of Force
278(1)
Problems
279(1)
References
280(1)
13 Failure Analysis
281(22)
13.1 Introduction
281(4)
13.2 Microstructure Change with or Without Lattice Shift
285(2)
13.3 Statistical Analysis of Failure
287(3)
13.3.1 Black's Equation of MTTF for Electromigration
287(2)
13.3.2 Weibull Distribution Function and JMA Theory of Phase Transformations
289(1)
13.4 A Unified Model of MTTF for Electromigration, Thermomigration, and Stress-Migration
290(3)
13.4.1 Revisit Black's Equation of MTTF for Electromigration
290(2)
13.4.2 MTTF for Thermomigration
292(1)
13.4.3 MTTF for Stress-Migration
292(1)
13.4.4 The Link Among MTTF for Electromigration, Thermomigration, and Stress-Migration
293(1)
13.4.5 MTTF Equations for Other Irreversible Processes in Open Systems
293(1)
13.5 Failure Analysis in Mobile Technology
293(10)
13.5.1 Joule Heating Enhanced Electromigration Failure of Weak-Link in 2.5D IC Technology
294(4)
13.5.2 Joule Heating Induced Thermomigration Failure Due to Thermal Crosstalk in 2.5D IC Technology
298(3)
Problems
301(1)
References
302(1)
14 Artificial Intelligence in Electronic Packaging Reliability
303(4)
14.1 Introduction
303(1)
14.2 To Change Time-Dependent Event to Time-Independent Event
304(1)
14.3 To Deduce MTTF from Mean Microstructure Change to Failure
305(1)
14.4 Summary
306(1)
Index 307
King-Ning Tu, PhD, is TSMC Chair Professor at the National Chiao Tung University in Taiwan. He received his doctorate in Applied Physics from Harvard University in 1968.

Chih Chen, PhD, is Chairman and Distinguished Professor in the Department of Materials Science and Engineering at National Yang Ming Chiao Tung University in Taiwan. He received his doctorate in Materials Science from the University of California at Los Angeles in 1999.

Hung-Ming Chen, PhD, is Professor in the Institute of Electronics at National Yang Ming Chiao Tung University in Taiwan. He received his doctorate in Computer Sciences from the University of Texas at Austin in 2003.