Atnaujinkite slapukų nuostatas

Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change 2012 ed. [Minkštas viršelis]

  • Formatas: Paperback / softback, 258 pages, aukštis x plotis: 235x155 mm, weight: 421 g, XIV, 258 p., 1 Paperback / softback
  • Serija: Progress in Mathematics 298
  • Išleidimo metai: 13-Apr-2014
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 3034807953
  • ISBN-13: 9783034807951
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 258 pages, aukštis x plotis: 235x155 mm, weight: 421 g, XIV, 258 p., 1 Paperback / softback
  • Serija: Progress in Mathematics 298
  • Išleidimo metai: 13-Apr-2014
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 3034807953
  • ISBN-13: 9783034807951
Kitos knygos pagal šią temą:
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

Chapter
1. Introduction.
Chapter
2. Review of Chains and Cochains.-
Chapter
3. Review of Intersection Homology and Cohomology.
Chapter
4. Review
of Arithmetic Quotients.
Chapter
5. Generalities on Hilbert Modular Forms
and Varieties.
Chapter
6. Automorphic vector bundles and local systems.-
Chapter
7. The automorphic description of intersection cohomology.
Chapter
8. Hilbert Modular Forms with Coefficients in a Hecke Module.
Chapter
9.
Explicit construction of cycles.
Chapter
10. The full version of Theorem
1.3.
Chapter
11. Eisenstein Series with Coefficients in Intersection
Homology.- Appendix A. Proof of Proposition 2.4.- Appendix B. Recollections
on Orbifolds.- Appendix C. Basic adčlic facts.- Appendix D. Fourier
expansions of Hilbert modular forms.- Appendix E. Review of Prime Degree Base
Change for GL2.- Bibliography.