|
|
xi | |
|
|
xix | |
Preface |
|
xxi | |
Nomenclature |
|
xxiii | |
|
|
1 | (4) |
|
|
|
|
5 | (56) |
|
|
6 | (1) |
|
2.2 Types of Bubble Columns |
|
|
6 | (1) |
|
|
7 | (36) |
|
2.3.1 Methodology of Gas Injection |
|
|
8 | (3) |
|
2.3.2 Bubble Formation and Size Change |
|
|
11 | (5) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (4) |
|
2.3.3.4 Effect of Multiple Bubbles |
|
|
21 | (1) |
|
2.3.4 Void Fraction Prediction |
|
|
22 | (11) |
|
2.3.5 Detailed Behaviour of the Flow |
|
|
33 | (4) |
|
2.3.6 Gas-Liquid Mass Transfer |
|
|
37 | (4) |
|
2.3.7 Design of Gas Introduction Arrangement |
|
|
41 | (1) |
|
|
42 | (1) |
|
2.4 Disengagement of Liquid from Gas |
|
|
43 | (11) |
|
2.4.1 Mechanisms of Drop Formation |
|
|
43 | (1) |
|
|
44 | (3) |
|
2.4.3 Wave Plate Mist Eliminators |
|
|
47 | (4) |
|
2.4.4 Mesh Mist Eliminators |
|
|
51 | (3) |
|
|
54 | (2) |
|
|
56 | (5) |
|
3 Sparged Stirred Vessels |
|
|
61 | (30) |
|
|
62 | (1) |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
65 | (2) |
|
|
67 | (5) |
|
|
67 | (2) |
|
3.5.2 Pitched Blade Turbines |
|
|
69 | (1) |
|
3.5.3 Hydrofoil Impellers |
|
|
69 | (3) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (4) |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (5) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (3) |
|
|
84 | (1) |
|
|
85 | (2) |
|
|
87 | (4) |
|
|
91 | (34) |
|
|
91 | (1) |
|
4.2 Falling Film Reactors |
|
|
92 | (13) |
|
|
96 | (3) |
|
|
99 | (3) |
|
4.2.3 Heat and Mass Transfer |
|
|
102 | (3) |
|
4.3 Rotating Disc Reactors |
|
|
105 | (4) |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (1) |
|
4.4 Two-Phase Tubular Reactors |
|
|
109 | (4) |
|
|
113 | (6) |
|
|
115 | (1) |
|
4.5.2 Flow Phenomena in Micro-Channels |
|
|
115 | (2) |
|
4.5.3 Numerical Modelling |
|
|
117 | (2) |
|
|
119 | (1) |
|
|
120 | (5) |
|
|
125 | (34) |
|
|
126 | (2) |
|
5.2 Eulerian Multiphase Flow Model |
|
|
128 | (11) |
|
|
128 | (1) |
|
5.2.2 Transport Equations |
|
|
128 | (1) |
|
5.2.2.1 Continuity Equation |
|
|
129 | (1) |
|
5.2.2.2 Momentum Equation |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
130 | (2) |
|
|
132 | (1) |
|
5.2.3.3 Virtual Mass Force |
|
|
132 | (1) |
|
5.2.3.4 Turbulent Drag Force |
|
|
133 | (1) |
|
|
133 | (1) |
|
5.2.3.6 Wall Lubrication Force |
|
|
133 | (1) |
|
|
134 | (1) |
|
5.2.5 Case Study -- Cylindrical Bubble Column |
|
|
135 | (1) |
|
5.2.6 Homogenous and Mixture Modelling |
|
|
135 | (1) |
|
5.2.6.1 General Formulation |
|
|
136 | (1) |
|
|
137 | (2) |
|
|
139 | (10) |
|
|
139 | (1) |
|
|
140 | (1) |
|
5.3.1.2 Coalescence Model |
|
|
141 | (1) |
|
5.3.2 Case Study -- Hibiki's Bubble Column |
|
|
142 | (1) |
|
5.3.2.1 Numerical Solution Method |
|
|
142 | (1) |
|
5.3.2.2 Results and Discussion |
|
|
142 | (6) |
|
5.3.2.3 Summary of Case Study |
|
|
148 | (1) |
|
5.4 Gassed Stirred Vessels |
|
|
149 | (5) |
|
|
149 | (1) |
|
5.4.2 Multiple Reference Frame |
|
|
150 | (1) |
|
|
150 | (4) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (3) |
|
6 Mesoscale Modelling Using the Lattice Boltzmann Method |
|
|
159 | (34) |
|
|
159 | (2) |
|
6.2 Lattice Boltzmann Method and the Advantages |
|
|
161 | (2) |
|
6.3 Numerical Simulation of Single-Phase Flow and Heat Transfer |
|
|
163 | (6) |
|
|
164 | (2) |
|
6.3.2 Treatment for a Curved Boundary |
|
|
166 | (1) |
|
6.3.3 Numerical Simulation and Results |
|
|
167 | (2) |
|
6.4 Numerical Simulation of Two-Phase Flow |
|
|
169 | (18) |
|
6.4.1 Two-Phase Lattice Boltzmann Model |
|
|
169 | (6) |
|
6.4.2 Vortices Merging in a Two-Phase Spatially Growing Mixing Layer |
|
|
175 | (1) |
|
6.4.3 Viscous Fingering Phenomena of Immiscible Two-Fluid Displacement |
|
|
176 | (2) |
|
6.4.4 Bubbles/Drops Flow Behaviour |
|
|
178 | (1) |
|
|
178 | (3) |
|
6.4.4.2 Correction of Pressure |
|
|
181 | (1) |
|
6.4.4.3 Boundary Treatment |
|
|
181 | (2) |
|
6.4.4.4 Results of Two Rising Bubbles Coalescence |
|
|
183 | (2) |
|
6.4.4.5 Results of Droplet Spreading on Partial Wetting Surface |
|
|
185 | (2) |
|
|
187 | (6) |
|
|
|
|
193 | (8) |
|
|
193 | (1) |
|
7.2 Active Relief Methods |
|
|
194 | (1) |
|
7.3 Passive Relief Methods |
|
|
195 | (4) |
|
|
199 | (2) |
|
8 Behaviour of Vessel Contents and Outflow Calculations |
|
|
201 | (36) |
|
|
201 | (11) |
|
8.1.1 Physics of Venting Processes |
|
|
201 | (1) |
|
|
202 | (1) |
|
8.1.3 Trends and Observations |
|
|
203 | (7) |
|
8.1.4 Summary of Observations and Measurements of the Level Swell Process |
|
|
210 | (2) |
|
8.2 Modelling of the Level Swell Process |
|
|
212 | (4) |
|
8.3 Vent Sizing and Vent Performance Calculations |
|
|
216 | (4) |
|
8.4 Computer Codes for Level Swell and Venting Calculations |
|
|
220 | (2) |
|
8.5 Obtaining Necessary Data |
|
|
222 | (4) |
|
8.6 Performance of Models and Codes |
|
|
226 | (2) |
|
|
228 | (2) |
|
|
230 | (3) |
|
|
233 | (2) |
|
|
235 | (2) |
|
|
237 | (22) |
|
|
237 | (2) |
|
|
239 | (2) |
|
|
241 | (9) |
|
9.4 Effect of Vent Pipework |
|
|
250 | (5) |
|
|
255 | (1) |
|
|
256 | (3) |
|
|
|
10 Measurement Techniques |
|
|
259 | (48) |
|
|
260 | (23) |
|
|
260 | (1) |
|
10.1.2 Local Probes: Conductance or Refraction Index |
|
|
261 | (1) |
|
|
261 | (2) |
|
10.1.2.2 Bubble Size and Velocity |
|
|
263 | (1) |
|
|
264 | (2) |
|
10.1.4 Photographic Techniques |
|
|
266 | (1) |
|
10.1.5 Laser Doppler Anemometry (LDA) |
|
|
267 | (1) |
|
10.1.6 Particle Image Velocimetry (PIV) |
|
|
268 | (1) |
|
10.1.7 Electrical Tomography Methods (ECT and ERT) |
|
|
269 | (4) |
|
10.1.8 y and X-Ray Tomography |
|
|
273 | (4) |
|
|
277 | (2) |
|
|
279 | (2) |
|
10.1.11 Mass Transfer Coefficient |
|
|
281 | (2) |
|
10.2 Sparged Stirred Tanks |
|
|
283 | (7) |
|
|
283 | (1) |
|
|
284 | (1) |
|
10.2.1.2 Measurement of Motor Power |
|
|
285 | (1) |
|
10.2.1.3 Modified Rheometer Method |
|
|
285 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (2) |
|
10.2.5 Mass Transfer Coefficient |
|
|
288 | (2) |
|
10.3 Falling Film Reactors |
|
|
290 | (10) |
|
|
290 | (6) |
|
10.3.2 Heat and Mass Transfer |
|
|
296 | (4) |
|
|
300 | (2) |
|
|
302 | (5) |
Index |
|
307 | |