Atnaujinkite slapukų nuostatas

El. knyga: Hydrodynamics of Gas-Liquid Reactors: Normal Operation and Upset Conditions

(University of Nottingham), (CD-adapco), (University of Nottingham), (University of Nottingham), (University of Nottingham), (Delf University of Technology)
  • Formatas: PDF+DRM
  • Išleidimo metai: 09-May-2011
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119970323
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 09-May-2011
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119970323
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"The design of chemical reactors and their safety are as critical to the success of a chemical process as the actual chemistry taking place within the reactor. This book provides a comprehensive overview of the practical aspects of multiphase reactor design and operation with an emphasis on safety and clean technology. It considers not only standard operation conditions, but also the problems of runaway reaction conditions and protection against ensuing over-pressure. Hydrodynamics of Multiphase Reactors addresses both practical and theoretical aspects of this topic. Initial chapters discuss various different types of gas/liquid reactors from a practical viewpoint, and later chapters focus on the modelling of multiphase systems and computational methodsfor reactor design and problem solving. The material is written by experts in their specific fields and will include chapters on the following topics: Multiphase flow, Bubble columns, Sparged stirred vessels, Macroscale modelling, Microscale modelling, Runaway conditions, Behaviour of vessel contents, Choked flow, Measurement techniques"--

Provided by publisher.

The design of chemical reactors and their safety are as critical to the success of a chemical process as the actual chemistry taking place within the reactor. This book provides a comprehensive overview of the practical aspects of multiphase reactor design and operation with an emphasis on safety and clean technology. It considers not only standard operation conditions, but also the problems of runaway reaction conditions and protection against ensuing over-pressure.

Hydrodynamics of Multiphase Reactors addresses both practical and theoretical aspects of this topic. Initial chapters discuss various different types of gas/liquid reactors from a practical viewpoint, and later chapters focus on the modelling of multiphase systems and computational methods for reactor design and problem solving. The material is written by experts in their specific fields and will include chapters on the following topics: Multiphase flow, Bubble columns, Sparged stirred vessels, Macroscale modelling, Microscale modelling, Runaway conditions, Behaviour of vessel contents, Choked flow, Measurement techniques.

List of Figures
xi
List of Tables
xix
Preface xxi
Nomenclature xxiii
1 Introduction
1(4)
Part One
2 Bubble Columns
5(56)
2.1 Introduction
6(1)
2.2 Types of Bubble Columns
6(1)
2.3 Introduction of Gas
7(36)
2.3.1 Methodology of Gas Injection
8(3)
2.3.2 Bubble Formation and Size Change
11(5)
2.3.3 Bubble Movement
16(1)
2.3.3.1 Bubble Shape
16(1)
2.3.3.2 Bubble Motion
17(1)
2.3.3.3 Bubble Velocity
17(4)
2.3.3.4 Effect of Multiple Bubbles
21(1)
2.3.4 Void Fraction Prediction
22(11)
2.3.5 Detailed Behaviour of the Flow
33(4)
2.3.6 Gas-Liquid Mass Transfer
37(4)
2.3.7 Design of Gas Introduction Arrangement
41(1)
2.3.8 Worked Example
42(1)
2.4 Disengagement of Liquid from Gas
43(11)
2.4.1 Mechanisms of Drop Formation
43(1)
2.4.2 Drop Capture
44(3)
2.4.3 Wave Plate Mist Eliminators
47(4)
2.4.4 Mesh Mist Eliminators
51(3)
Questions
54(2)
References
56(5)
3 Sparged Stirred Vessels
61(30)
3.1 Introduction
62(1)
3.2 Flow Regimes
63(2)
3.3 Variations
65(1)
3.4 Spargers
65(2)
3.5 Impellers
67(5)
3.5.1 Disc Turbines
67(2)
3.5.2 Pitched Blade Turbines
69(1)
3.5.3 Hydrofoil Impellers
69(3)
3.5.4 Multiple Impellers
72(1)
3.6 Baffles
72(1)
3.7 Power Requirements
73(4)
3.7.1 Single Impellers
73(2)
3.7.2 Multiple Impellers
75(1)
3.7.3 Single-Phase Power
76(1)
3.8 Gas Fraction
77(2)
3.9 Mass Transfer
79(5)
3.9.1 Bubble Size
79(1)
3.9.2 Interfacial Area
80(1)
3.9.3 Mass Transfer
81(3)
3.10 Mixing Times
84(1)
Questions
85(2)
References
87(4)
4 Thin Film Reactors
91(34)
4.1 Introduction
91(1)
4.2 Falling Film Reactors
92(13)
4.2.1 Film Thickness
96(3)
4.2.2 Interfacial Waves
99(3)
4.2.3 Heat and Mass Transfer
102(3)
4.3 Rotating Disc Reactors
105(4)
4.3.1 Film Thickness
105(2)
4.3.2 Interfacial Waves
107(1)
4.3.3 Mass Transfer
108(1)
4.4 Two-Phase Tubular Reactors
109(4)
4.5 Monolith Reactors
113(6)
4.5.1 Micro-Channels
115(1)
4.5.2 Flow Phenomena in Micro-Channels
115(2)
4.5.3 Numerical Modelling
117(2)
Questions
119(1)
References
120(5)
5 Macroscale Modelling
125(34)
5.1 Introduction
126(2)
5.2 Eulerian Multiphase Flow Model
128(11)
5.2.1 Definition
128(1)
5.2.2 Transport Equations
128(1)
5.2.2.1 Continuity Equation
129(1)
5.2.2.2 Momentum Equation
129(1)
5.2.2.3 Energy Equation
130(1)
5.2.3 Interfacial Forces
130(1)
5.2.3.1 Drag Force
130(2)
5.2.3.2 Lift Force
132(1)
5.2.3.3 Virtual Mass Force
132(1)
5.2.3.4 Turbulent Drag Force
133(1)
5.2.3.5 Basset Force
133(1)
5.2.3.6 Wall Lubrication Force
133(1)
5.2.4 Turbulence Models
134(1)
5.2.5 Case Study -- Cylindrical Bubble Column
135(1)
5.2.6 Homogenous and Mixture Modelling
135(1)
5.2.6.1 General Formulation
136(1)
5.2.6.2 Mixture Model
137(2)
5.3 Poly-Dispersed Flows
139(10)
5.3.1 Methods of Moments
139(1)
5.3.1.1 Breakup Model
140(1)
5.3.1.2 Coalescence Model
141(1)
5.3.2 Case Study -- Hibiki's Bubble Column
142(1)
5.3.2.1 Numerical Solution Method
142(1)
5.3.2.2 Results and Discussion
142(6)
5.3.2.3 Summary of Case Study
148(1)
5.4 Gassed Stirred Vessels
149(5)
5.4.1 Impeller Model
149(1)
5.4.2 Multiple Reference Frame
150(1)
5.4.3 Multiple Impellers
150(4)
5.5 Summary
154(1)
Questions
155(1)
References
156(3)
6 Mesoscale Modelling Using the Lattice Boltzmann Method
159(34)
6.1 Introduction
159(2)
6.2 Lattice Boltzmann Method and the Advantages
161(2)
6.3 Numerical Simulation of Single-Phase Flow and Heat Transfer
163(6)
6.3.1 LBM Model
164(2)
6.3.2 Treatment for a Curved Boundary
166(1)
6.3.3 Numerical Simulation and Results
167(2)
6.4 Numerical Simulation of Two-Phase Flow
169(18)
6.4.1 Two-Phase Lattice Boltzmann Model
169(6)
6.4.2 Vortices Merging in a Two-Phase Spatially Growing Mixing Layer
175(1)
6.4.3 Viscous Fingering Phenomena of Immiscible Two-Fluid Displacement
176(2)
6.4.4 Bubbles/Drops Flow Behaviour
178(1)
6.4.4.1 LBM Method
178(3)
6.4.4.2 Correction of Pressure
181(1)
6.4.4.3 Boundary Treatment
181(2)
6.4.4.4 Results of Two Rising Bubbles Coalescence
183(2)
6.4.4.5 Results of Droplet Spreading on Partial Wetting Surface
185(2)
References
187(6)
Part Two
7 Upset Conditions
193(8)
7.1 Introduction
193(1)
7.2 Active Relief Methods
194(1)
7.3 Passive Relief Methods
195(4)
References
199(2)
8 Behaviour of Vessel Contents and Outflow Calculations
201(36)
8.1 Introduction
201(11)
8.1.1 Physics of Venting Processes
201(1)
8.1.2 Typical Reactions
202(1)
8.1.3 Trends and Observations
203(7)
8.1.4 Summary of Observations and Measurements of the Level Swell Process
210(2)
8.2 Modelling of the Level Swell Process
212(4)
8.3 Vent Sizing and Vent Performance Calculations
216(4)
8.4 Computer Codes for Level Swell and Venting Calculations
220(2)
8.5 Obtaining Necessary Data
222(4)
8.6 Performance of Models and Codes
226(2)
Appendix 8.A
228(2)
Appendix 8.B
230(3)
Questions
233(2)
References
235(2)
9 Choked Flow
237(22)
9.1 Introduction
237(2)
9.2 Single-Phase Flow
239(2)
9.3 Two-Phase Flow
241(9)
9.4 Effect of Vent Pipework
250(5)
Questions
255(1)
References
256(3)
Part Three
10 Measurement Techniques
259(48)
10.1 Bubble Columns
260(23)
10.1.1 GasHold-Up
260(1)
10.1.2 Local Probes: Conductance or Refraction Index
261(1)
10.1.2.1 Gas Fraction
261(2)
10.1.2.2 Bubble Size and Velocity
263(1)
10.1.3 Wire Mesh Sensors
264(2)
10.1.4 Photographic Techniques
266(1)
10.1.5 Laser Doppler Anemometry (LDA)
267(1)
10.1.6 Particle Image Velocimetry (PIV)
268(1)
10.1.7 Electrical Tomography Methods (ECT and ERT)
269(4)
10.1.8 y and X-Ray Tomography
273(4)
10.1.9 CARPT and PEPT
277(2)
10.1.10 Acoustic Methods
279(2)
10.1.11 Mass Transfer Coefficient
281(2)
10.2 Sparged Stirred Tanks
283(7)
10.2.1 Power Draw
283(1)
10.2.1.1 Strain Gauges
284(1)
10.2.1.2 Measurement of Motor Power
285(1)
10.2.1.3 Modified Rheometer Method
285(1)
10.2.2 Velocity Field
285(1)
10.2.3 Void Fraction
286(1)
10.2.4 Mixing Time
286(2)
10.2.5 Mass Transfer Coefficient
288(2)
10.3 Falling Film Reactors
290(10)
10.3.1 Film Thickness
290(6)
10.3.2 Heat and Mass Transfer
296(4)
Questions
300(2)
References
302(5)
Index 307
Professor Barry Azzopardi is based in the School of Chemical and Environmental Engineering at the University of Nottingham. Barry is responsible for multiphase flow research , with particular focus on phase separation in reaction vessels, drop size measurement in complex systems, demisting, gas cleaning and flow in aero-engine bearing chambers. He has over 70 technical publications.

Professor Robert Mudde is based in the Department of Multiscale Physics in the Faculty of Applied Science, Delft University of Technology, The Netherlands. His research interests include bubbly flows, advanced experiments in multiphase flows and multiphase hydrodynamics. He has authored more than 50 refereed journal papers and is an associate editor of the International Journal of Multiphase Flow.

S. Lo, CD Adapco, (Computational Engineering Company, London)

H. Morvan, Mechanical, Manufacturing and Materials Engineering, University of Nottingham

Y.Y. Yan, Associate Professor, School of the Built Environment, University of Nottingham

Donglin Zhao, Chemical and Environmental Engineering, University of Nottingham