Atnaujinkite slapukų nuostatas

El. knyga: Introduction to Riemannian Manifolds

4.31/5 (47 ratings by Goodreads)
  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 176
  • Išleidimo metai: 02-Jan-2019
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319917559
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Graduate Texts in Mathematics 176
  • Išleidimo metai: 02-Jan-2019
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319917559
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook is designed for a one or two semester graduate course on Riemannian geometry for students who are familiar with topological and differentiable manifolds. The second edition has been adapted, expanded, and aptly retitled from Lees earlier book, Riemannian Manifolds: An Introduction to Curvature.  Numerous exercises and problem sets provide the student with opportunities to practice and develop skills; appendices contain a brief review of essential background material. While demonstrating the uses of most of the main technical tools needed for a careful study of Riemannian manifolds, this text focuses on ensuring that the student develops an intimate acquaintance with the geometric meaning of curvature. The reasonably broad coverage begins with a treatment of indispensable tools for working with Riemannian metrics such as connections and geodesics. Several topics have been added, including an expanded treatment of pseudo-Riemannianmetrics, a more detailed treatment of homogeneous spaces and invariant metrics, a completely revamped treatment of comparison theory based on Riccati equations, and a handful of new local-to-global theorems, to name just a few highlights. Reviews of the first edition: Arguments and proofs are written down precisely and clearly. The expertise of the author is reflected in many valuable comments and remarks on the recent developments of the subjects. Serious readers would have the challenges of solving the exercises and problems. The book is probably one of the most easily accessible introductions to Riemannian geometry. (M.C. Leung, MathReview)  The books aim is to develop tools and intuition for studying the central unifying theme in Riemannian geometry, which is the notion of curvature and its relation with topology. The main ideas of the subject, motivated as in the original papers, are introduced here in an intuitive and accessible wayThe book is an excellent introduction designed for a one-semester graduate course, containing exercises and problems which encourage students to practice working with the new notions and develop skills for later use. By citing suitable references for detailed study, the reader is stimulated to inquire into further research. (C.-L. Bejan, zBMATH)

Recenzijos

One interesting aspect of the book is the decision of which audience to target it towards. Overall, this would make a very appropriate text for a graduate course, or a programme of individual study in Riemannian geometry, whether to give a thorough treatment of the fundamentals, or to introduce the more advanced topics in global geometry. (Robert J. Low, Mathematical Reviews, November, 2019) This material is carefully developed and several useful examples and exercises are included in each chapter. The reviewers belief is that this excellent edition will become soon a standard text for several graduate courses as well as an frequent citation in articles. (Mircea Crāmreanu, zbMATH 1409.53001, 2019)

Preface v
1 What Is Curvature?
1(8)
The Euclidean Plane
1(3)
Surfaces in Space
4(3)
Curvature in Higher Dimensions
7(2)
2 Riemannian Metrics
9(46)
Definitions
9(6)
Methods for Constructing Riemannian Metrics
15(10)
Basic Constructions on Riemannian Manifolds
25(8)
Lengths and Distances
33(7)
Pseudo-Riemannian Metrics
40(6)
Other Generalizations of Riemannian Metrics
46(1)
Problems
47(8)
3 Model Riemannian Manifolds
55(30)
Symmetries of Riemannian Manifolds
55(2)
Euclidean Spaces
57(1)
Spheres
58(4)
Hyperbolic Spaces
62(5)
Invariant Metrics on Lie Groups
67(5)
Other Homogeneous Riemannian Manifolds
72(7)
Model Pseudo-Riemannian Manifolds
79(1)
Problems
80(5)
4 Connections
85(30)
The Problem of Differentiating Vector Fields
85(3)
Connections
88(7)
Covariant Derivatives of Tensor Fields
95(5)
Vector and Tensor Fields Along Curves
100(3)
Geodesies
103(2)
Parallel Transport
105(5)
Pullback Connections
110(1)
Problems
111(4)
5 The Levi-Civita Connection
115(36)
The Tangential Connection Revisited
115(2)
Connections on Abstract Riemannian Manifolds
117(9)
The Exponential Map
126(5)
Normal Neighborhoods and Normal Coordinates
131(2)
Tubular Neighborhoods and Fermi Coordinates
133(3)
Geodesies of the Model Spaces
136(6)
Euclidean and Non-Euclidean Geometries
142(3)
Problems
145(6)
6 Geodesies and Distance
151(42)
Geodesies and Minimizing Curves
151(12)
Uniformly Normal Neighborhoods
163(3)
Completeness
166(8)
Distance Functions
174(7)
Semigeodesic Coordinates
181(4)
Problems
185(8)
7 Curvature
193(32)
Local Invariants
193(3)
The Curvature Tensor
196(3)
Flat Manifolds
199(3)
Symmetries of the Curvature Tensor
202(3)
The Ricci Identities
205(2)
Ricci and Scalar Curvatures
207(5)
The Weyl Tensor
212(4)
Curvatures of Conformally Related Metrics
216(6)
Problems
222(3)
8 Riemannian Submanifolds
225(38)
The Second Fundamental Form
225(9)
Hypersurfaces
234(10)
Hypersurfaces in Euclidean Space
244(6)
Sectional Curvatures
250(5)
Problems
255(8)
9 The Gauss--Bonnet Theorem
263(20)
Some Plane Geometry
263(8)
The Gauss--Bonnet Formula
271(5)
The Gauss--Bonnet Theorem
276(5)
Problems
281(2)
10 Jacobi Fields
283(36)
The Jacobi Equation
284(3)
Basic Computations with Jacobi Fields
287(10)
Conjugate Points
297(3)
The Second Variation Formula
300(7)
Cut Points
307(6)
Problems
313(6)
11 Comparison Theory
319(26)
Jacobi Fields, Hessians, and Riccati Equations
320(7)
Comparisons Based on Sectional Curvature
327(9)
Comparisons Based on Ricci Curvature
336(6)
Problems
342(3)
12 Curvature and Topology
345(26)
Manifolds of Constant Curvature
345(7)
Manifolds of Nonpositive Curvature
352(9)
Manifolds of Positive Curvature
361(7)
Problems
368(3)
Appendix A Review of Smooth Manifolds
371(20)
Topological Preliminaries
371(3)
Smooth Manifolds and Smooth Maps
374(2)
Tangent Vectors
376(2)
Submanifolds
378(4)
Vector Bundles
382(2)
The Tangent Bundle and Vector Fields
384(4)
Smooth Covering Maps
388(3)
Appendix B Review of Tensors
391(16)
Tensors on a Vector Space
391(5)
Tensor Bundles and Tensor Fields
396(4)
Differential Forms and Integration
400(5)
Densities
405(2)
Appendix C Review of Lie Groups
407(8)
Definitions and Properties
407(1)
The Lie Algebra of a Lie Group
408(3)
Group Actions on Manifolds
411(4)
References 415(4)
Notation Index 419(4)
Subject Index 423
John "Jack" M. Lee is a professor of mathematics at the University of Washington. Professor Lee is the author of three highly acclaimed Springer graduate textbooks : Introduction to Smooth Manifolds, (GTM 218) Introduction to Topological Manifolds (GTM 202), and Riemannian Manifolds (GTM 176). Lee's research interests include differential geometry, the Yamabe problem, existence of Einstein metrics, the constraint equations in general relativity, geometry and analysis on CR manifolds.