Preface |
|
v | |
|
|
1 | (8) |
|
|
1 | (3) |
|
|
4 | (3) |
|
Curvature in Higher Dimensions |
|
|
7 | (2) |
|
|
9 | (46) |
|
|
9 | (6) |
|
Methods for Constructing Riemannian Metrics |
|
|
15 | (10) |
|
Basic Constructions on Riemannian Manifolds |
|
|
25 | (8) |
|
|
33 | (7) |
|
Pseudo-Riemannian Metrics |
|
|
40 | (6) |
|
Other Generalizations of Riemannian Metrics |
|
|
46 | (1) |
|
|
47 | (8) |
|
3 Model Riemannian Manifolds |
|
|
55 | (30) |
|
Symmetries of Riemannian Manifolds |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
58 | (4) |
|
|
62 | (5) |
|
Invariant Metrics on Lie Groups |
|
|
67 | (5) |
|
Other Homogeneous Riemannian Manifolds |
|
|
72 | (7) |
|
Model Pseudo-Riemannian Manifolds |
|
|
79 | (1) |
|
|
80 | (5) |
|
|
85 | (30) |
|
The Problem of Differentiating Vector Fields |
|
|
85 | (3) |
|
|
88 | (7) |
|
Covariant Derivatives of Tensor Fields |
|
|
95 | (5) |
|
Vector and Tensor Fields Along Curves |
|
|
100 | (3) |
|
|
103 | (2) |
|
|
105 | (5) |
|
|
110 | (1) |
|
|
111 | (4) |
|
5 The Levi-Civita Connection |
|
|
115 | (36) |
|
The Tangential Connection Revisited |
|
|
115 | (2) |
|
Connections on Abstract Riemannian Manifolds |
|
|
117 | (9) |
|
|
126 | (5) |
|
Normal Neighborhoods and Normal Coordinates |
|
|
131 | (2) |
|
Tubular Neighborhoods and Fermi Coordinates |
|
|
133 | (3) |
|
Geodesies of the Model Spaces |
|
|
136 | (6) |
|
Euclidean and Non-Euclidean Geometries |
|
|
142 | (3) |
|
|
145 | (6) |
|
|
151 | (42) |
|
Geodesies and Minimizing Curves |
|
|
151 | (12) |
|
Uniformly Normal Neighborhoods |
|
|
163 | (3) |
|
|
166 | (8) |
|
|
174 | (7) |
|
|
181 | (4) |
|
|
185 | (8) |
|
|
193 | (32) |
|
|
193 | (3) |
|
|
196 | (3) |
|
|
199 | (3) |
|
Symmetries of the Curvature Tensor |
|
|
202 | (3) |
|
|
205 | (2) |
|
Ricci and Scalar Curvatures |
|
|
207 | (5) |
|
|
212 | (4) |
|
Curvatures of Conformally Related Metrics |
|
|
216 | (6) |
|
|
222 | (3) |
|
8 Riemannian Submanifolds |
|
|
225 | (38) |
|
The Second Fundamental Form |
|
|
225 | (9) |
|
|
234 | (10) |
|
Hypersurfaces in Euclidean Space |
|
|
244 | (6) |
|
|
250 | (5) |
|
|
255 | (8) |
|
9 The Gauss--Bonnet Theorem |
|
|
263 | (20) |
|
|
263 | (8) |
|
The Gauss--Bonnet Formula |
|
|
271 | (5) |
|
The Gauss--Bonnet Theorem |
|
|
276 | (5) |
|
|
281 | (2) |
|
|
283 | (36) |
|
|
284 | (3) |
|
Basic Computations with Jacobi Fields |
|
|
287 | (10) |
|
|
297 | (3) |
|
The Second Variation Formula |
|
|
300 | (7) |
|
|
307 | (6) |
|
|
313 | (6) |
|
|
319 | (26) |
|
Jacobi Fields, Hessians, and Riccati Equations |
|
|
320 | (7) |
|
Comparisons Based on Sectional Curvature |
|
|
327 | (9) |
|
Comparisons Based on Ricci Curvature |
|
|
336 | (6) |
|
|
342 | (3) |
|
12 Curvature and Topology |
|
|
345 | (26) |
|
Manifolds of Constant Curvature |
|
|
345 | (7) |
|
Manifolds of Nonpositive Curvature |
|
|
352 | (9) |
|
Manifolds of Positive Curvature |
|
|
361 | (7) |
|
|
368 | (3) |
|
Appendix A Review of Smooth Manifolds |
|
|
371 | (20) |
|
Topological Preliminaries |
|
|
371 | (3) |
|
Smooth Manifolds and Smooth Maps |
|
|
374 | (2) |
|
|
376 | (2) |
|
|
378 | (4) |
|
|
382 | (2) |
|
The Tangent Bundle and Vector Fields |
|
|
384 | (4) |
|
|
388 | (3) |
|
Appendix B Review of Tensors |
|
|
391 | (16) |
|
Tensors on a Vector Space |
|
|
391 | (5) |
|
Tensor Bundles and Tensor Fields |
|
|
396 | (4) |
|
Differential Forms and Integration |
|
|
400 | (5) |
|
|
405 | (2) |
|
Appendix C Review of Lie Groups |
|
|
407 | (8) |
|
Definitions and Properties |
|
|
407 | (1) |
|
The Lie Algebra of a Lie Group |
|
|
408 | (3) |
|
Group Actions on Manifolds |
|
|
411 | (4) |
References |
|
415 | (4) |
Notation Index |
|
419 | (4) |
Subject Index |
|
423 | |