Atnaujinkite slapukų nuostatas

Introduction to Scanning Tunneling Microscopy 2nd Revised edition [Minkštas viršelis]

(Department of Applied Physics and Applied Mathematics, Columbia University, New York)
  • Formatas: Paperback / softback, 488 pages, aukštis x plotis x storis: 230x158x26 mm, weight: 714 g
  • Serija: Monographs on the Physics and Chemistry of Materials 64
  • Išleidimo metai: 17-Dec-2015
  • Leidėjas: Oxford University Press
  • ISBN-10: 0198754752
  • ISBN-13: 9780198754756
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 488 pages, aukštis x plotis x storis: 230x158x26 mm, weight: 714 g
  • Serija: Monographs on the Physics and Chemistry of Materials 64
  • Išleidimo metai: 17-Dec-2015
  • Leidėjas: Oxford University Press
  • ISBN-10: 0198754752
  • ISBN-13: 9780198754756
Kitos knygos pagal šią temą:
The scanning tunneling microscope and the atomic force microscope, both capable of imaging and manipulating individual atoms, were crowned with the Nobel Prize in Physics in 1986, and are the cornerstones of nanotechnology today. The first edition of this book has nurtured numerous beginners and experts since 1993. The second edition is a thoroughly updated version of this 'bible' in the field.

The second edition includes a number of new developments in the field. Non-contact atomic-force microscopy has demonstrated true atomic resolution. It enables direct observation and mapping of individual chemical bonds. A new chapter about the underlying physics, atomic forces, is added. The chapter on atomic force microscopy is substantially expanded. Spin-polarized STM has enabled the observation of local magnetic phenomena down to atomic scale. A pedagogical presentation of the basic concepts is included. Inelastic scanning tunneling microscopy has shown the capability of studying vibrational modes of individual molecules. The underlying theory and new instrumentation are added. For biological research, to increase the speed of scanning to observe life phenomena in real time is a key. Advances in this direction are presented as well. The capability of STM to manipulate individual atoms is one of the cornerstones of nanotechnology. The theoretical basis and in particular the relation between tunneling and interaction energy are thoroughly presented, together with experimental facts.

Recenzijos

The book Introduction to Scanning Tunneling Microscopy by C. Julian Chen serves as an excellent starting point to familiarize newcomers with the field, and at the same time provides an in-depth account of theoretical and practical aspects of SPM for the more experienced user. In my personal experience it is also very useful as a textbook for teaching single-molecule studies, at both the beginners and the advanced level. * J. A. A. W. Elemans, Journal of Applied Crystallography *

Preface to the Second Edition xxiii
Preface to the First Edition xxvii
Gallery xxxiii
Chapter 1 Overview
1(40)
1.1 The scanning tunneling microscope
1(2)
1.2 The concept of tunneling
3(9)
1.2.1 Transmission coefficient
3(3)
1.2.2 Semiclassical approximation
6(1)
1.2.3 The Landauer theory
6(4)
1.2.4 Tunneling conductance
10(2)
1.3 Probing electronic structure at atomic scale
12(9)
1.3.1 Experimental observations
15(3)
1.3.2 Origin of atomic resolution in STM
18(3)
1.4 The atomic force microscope
21(4)
1.4.1 Atomic-scale imaging by AFM
21(3)
1.4.2 Role of covalent bonding in AFM imaging
24(1)
1.5 Illustrative applications
25(20)
1.5.1 Catalysis research
25(4)
1.5.2 Atomic-scale imaging at the liquid-solid interface
29(4)
1.5.3 Atom manipulation
33(2)
1.5.4 Imaging and manipulating DNA using AFM
35(6)
Part I Principles 41(200)
Chapter 2 Tunneling Phenomenon
45(32)
2.1 The metal—insulator—metal tunneling junction
46(2)
2.2 The Bardeen theory of tunneling
48(16)
2.2.1 One-dimensional case
48(4)
2.2.2 Tunneling spectroscopy
52(1)
2.2.3 Energy dependence of tunneling matrix elements
53(1)
2.2.4 Asymmetry in tunneling spectrum
54(3)
2.2.5 Three-dimensional case
57(2)
2.2.6 Error estimation
59(1)
2.2.7 Wavefunction correction
60(1)
2.2.8 The transfer-Hamiltonian formalism
61(2)
2.2.9 The tunneling matrix
63(1)
2.2.10 Relation to the Landauer theory
64(1)
2.3 Inelastic tunneling
64(5)
2.3.1 Experimental facts
65(1)
2.3.2 Frequency condition
66(1)
2.3.3 Effect of finite temperature
67(2)
2.4 Spin-polarized tunneling
69(8)
2.4.1 General formalism
70(2)
2.4.2 The spin-valve effect
72(4)
2.4.3 Experimental observations
76(1)
Chapter 3 Tunneling Matrix Elements
77(16)
3.1 Introduction
77(1)
3.2 Tip wavefunctions
78(4)
3.2.1 General form
78(3)
3.2.2 Tip wavefunctions as Green's functions
81(1)
3.3 The derivative rule: individual cases
82(3)
3.3.1 s-wave tip state
82(1)
3.3.2 p-wave tip states
83(1)
3.3.3 d-wave tip states
84(1)
3.3.4 Complex tip states
84(1)
3.4 The derivative rule: general case
85(6)
3.5 An intuitive interpretation
91(2)
Chapter 4 Atomic Forces
93(30)
4.1 Van der Waals force
93(5)
4.1.1 The van der Waals equation of state
93(1)
4.1.2 The origin of van der Waals force
94(2)
4.1.3 Van der Waals force between a tip and a sample
96(2)
4.2 Hard-core repulsion
98(1)
4.3 The ionic bond
98(2)
4.4 The covalent bond: The concept
100(15)
4.4.1 Heisenberg's model of resonance
101(3)
4.4.2 The hydrogen molecule-ion
104(1)
4.4.3 Three regimes of interaction
105(1)
4.4.4 Van der Waals force
106(1)
4.4.5 Resonance energy as tunneling matrix element
107(4)
4.4.6 Evaluation of the modified Bardeen integral
111(3)
4.4.7 Repulsive force
114(1)
4.5 The covalent bond: Many-electron atoms
115(8)
4.5.1 The homonuclear diatomic molecules
115(1)
4.5.2 The perturbation approach
115(3)
4.5.3 Evaluation of the Bardeen Integral
118(1)
4.5.4 Comparison with experimental data
119(4)
Chapter 5 Atomic Forces and Tunneling
123(26)
5.1 The principle of equivalence
123(3)
5.2 General theory
126(5)
5.2.1 The double-well problem
126(2)
5.2.2 Canonical transformation of the transfer Hamiltonian
128(2)
5.2.3 Diagonizing the tunneling matrix
130(1)
5.3 Case of a metal tip and a metal sample
131(5)
5.3.1 Van der Waals force
132(1)
5.3.2 Resonance energy between two metal electrodes
132(3)
5.3.3 A measurable consequence
135(1)
5.3.4 Repulsive force
136(1)
5.4 Experimental verifications
136(9)
5.4.1 An early experiment
136(2)
5.4.2 Experiments with frequency-modulation AFM
138(2)
5.4.3 Experiments with static AFM
140(3)
5.4.4 Non-contact atomic force spectroscopy
143(2)
5.5 Threshold resistance in atom manipulation
145(4)
Chapter 6 Nanometer-Scale Imaging
149(20)
6.1 Types of STM and AFM images
149(2)
6.2 The Tersoff—Hamann model
151(15)
6.2.1 The concept
151(1)
6.2.2 The original derivation
152(3)
6.2.3 Profiles of surface reconstructions
155(3)
6.2.4 Extension to finite bias voltages
158(2)
6.2.5 Surface states: the concept
160(2)
6.2.6 Surface states: STM observations
162(4)
6.2.7 Heterogeneous surfaces
166(1)
6.3 Limitations of the Tersoff—Hamann model
166(3)
Chapter 7 Atomic-Scale Imaging
169(50)
7.1 Experimental facts
170(4)
7.1.1 Universality of atomic resolution
170(1)
7.1.2 Corrugation inversion
170(1)
7.1.3 Tip-state dependence
171(2)
7.1.4 Distance dependence of corrugation
173(1)
7.2 Intuitive explanations
174(4)
7.2.1 Sharpness of tip states
174(1)
7.2.2 Phase effect
175(2)
7.2.3 Arguments based on the reciprocity principle
177(1)
7.3 Analytic treatments
178(20)
7.3.1 A one-dimensional case
178(4)
7.3.2 Surfaces with hexagonal symmetry
182(4)
7.3.3 Corrugation inversion
186(4)
7.3.4 Profiles of atomic states as seen by STM
190(4)
7.3.5 Independent-orbital approximation
194(4)
7.4 First-principles studies: tip electronic states
198(4)
7.4.1 W clusters as STM tip models
198(1)
7.4.2 Density-functional study of a W—Cu STM junction
199(1)
7.4.3 Transition-metal pyramidal tips
199(1)
7.4.4 Transition-metal atoms adsorbed on W slabs
200(2)
7.5 First-principles studies: the images
202(7)
7.5.1 Transition-metal surfaces
202(2)
7.5.2 Atomic corrugation and surface waves
204(1)
7.5.3 Atom-resolved AFM images
205(4)
7.6 Spin-polarized STM
209(3)
7.7 Chemical identification of surface atoms
212(2)
7.8 The principle of reciprocity
214(5)
Chapter 8 Nanomechanical Effects
219(22)
8.1 Mechanical stability of the tip—sample junction
220(11)
8.1.1 Experimental observations
220(3)
8.1.2 Condition of mechanical stability
223(6)
8.1.3 Relaxation and the apparent G ~ z relation
229(2)
8.2 Mechanical effects on observed corrugations
231(7)
8.2.1 Soft surfaces
231(2)
8.2.2 Hard surfaces
233(3)
8.2.3 First-principles simulations
236(1)
8.2.4 Advanced topics
237(1)
8.2.5 The Pethica mechanism
238(1)
8.3 Force in tunneling-barrier measurements
238(3)
Part II Instrumentation 241(130)
Chapter 9 Piezoelectric Scanner
245(24)
9.1 Piezoelectricity
245(4)
9.1.1 Piezoelectric effect
245(1)
9.1.2 Inverse piezoelectric effect
246(3)
9.2 Piezoelectric materials in STM and AFM
249(5)
9.2.1 Quartz
249(1)
9.2.2 Lead zirconate titanate ceramics
250(4)
9.3 Piezoelectric devices in STM and AFM
254(3)
9.3.1 Tripod scanner
254(1)
9.3.2 Bimorph
255(2)
9.4 The tube scanner
257(8)
9.4.1 Deflection
258(2)
9.4.2 In situ testing and calibration
260(3)
9.4.3 Resonant frequencies
263(1)
9.4.4 Tilt compensation: the s-scanner
264(1)
9.4.5 Repolarizing a depolarized tube piezo
265(1)
9.5 The shear piezo
265(4)
Chapter 10 Vibration Isolation
269(14)
10.1 Basic concepts
269(4)
10.2 Environmental vibration
273(4)
10.2.1 Measurement method
274(1)
10.2.2 Vibration isolation of the foundation
275(2)
10.3 Vibrational immunity of STM
277(1)
10.4 Suspension-spring systems
278(4)
10.4.1 Analysis of two-stage systems
278(2)
10.4.2 Choice of springs
280(1)
10.4.3 Eddy-current damper
281(1)
10.5 Pneumatic systems
282(1)
Chapter 11 Electronics and Control
283(16)
11.1 Current amplifier
283(6)
11.1.1 Johnson noise and shot noise
284(2)
11.1.2 Frequency response
286(1)
11.1.3 Microphone effect
287(1)
11.1.4 Logarithmic amplifier
288(1)
11.2 Feedback circuit
289(8)
11.2.1 Steady-state response
290(2)
11.2.2 Transient response
292(5)
11.3 Computer interface
297(2)
11.3.1 Automatic approaching
298(1)
Chapter 12 Mechanical design
299(14)
12.1 The louse
299(1)
12.2 The pocket-size STM
300(1)
12.3 The single-tube STM
301(1)
12.4 The Besocke-type STM: the beetle
302(3)
12.5 The walker
305(1)
12.6 The kangaroo
306(2)
12.7 The Inchworm
308(1)
12.8 The match
309(4)
Chapter 13 Tip Treatment
313(18)
13.1 Introduction
313(1)
13.2 Electrochemical tip etching
314(3)
13.3 Ex situ tip treatments
317(7)
13.3.1 Annealing
317(1)
13.3.2 Field evaporation and controlled deposition
318(1)
13.3.3 Annealing with a field
319(1)
13.3.4 Atomic metallic ion emission
320(2)
13.3.5 Field-assisted reaction with nitrogen
322(2)
13.4 In situ tip treatments
324(2)
13.4.1 High-field treatment
324(1)
13.4.2 Controlled collision
325(1)
13.5 Tip treatment for spin-polarized STM
326(2)
13.5.1 Coating the tip with ferromagnetic materials
326(1)
13.5.2 Coating the tip with antiferromagnetic materials
327(1)
13.5.3 Controlled collision with magnetic surfaces
327(1)
13.6 Tip preparation for electrochemistry STM
328(3)
Chapter 14 Scanning Tunneling Spectroscopy
331(18)
14.1 Electronics for scanning tunneling spectroscopy
331(1)
14.2 Nature of the observed tunneling spectra
332(2)
14.3 Tip treatment for spectroscopy studies
334(3)
14.3.1 Annealing
334(2)
14.3.2 Controlled collision with a metal surface
336(1)
14.4 The Feenstra parameter
337(1)
14.5 Determination of the tip DOS
338(6)
14.5.1 Ex situ methods
338(2)
14.5.2 In situ methods
340(4)
14.6 Inelastic scanning tunneling spectroscopy
344(5)
14.6.1 Instrumentation
344(1)
14.6.2 Effect of finite modulation voltage
345(2)
14.6.3 Experimental observations
347(2)
Chapter 15 Atomic Force Microscopy
349(32)
15.1 Static mode and dynamic mode
350(1)
15.2 The cantilever
351(3)
15.2.1 Basic requirements
351(1)
15.2.2 Fabrication
352(2)
15.3 Static force detection
354(3)
15.3.1 Optical beam deflection
354(2)
15.3.2 Optical interferometry
356(1)
15.4 Tapping-mode AFM
357(4)
15.4.1 Acoustic actuation in liquids
358(1)
15.4.2 Magnetic actuation in liquids
359(2)
15.5 Non-contact AFM
361(10)
15.5.1 Case of small amplitude
361(3)
15.5.2 Case of finite amplitude
364(1)
15.5.3 Response function for frequency shift
365(1)
15.5.4 Second harmonics
366(2)
15.5.5 Average tunneling current
368(1)
15.5.6 Implementation
369(2)
Appendix A: Green's Functions 371(2)
Appendix B: Real Spherical Harmonics 373(4)
Appendix C: Spherical Modified Bessel Functions 377(4)
Appendix D: Plane Groups and Invariant Functions 381(8)
D.1 A brief summary of plane groups
382(3)
D.2 Invariant functions
385(4)
Appendix E: Elementary Elasticity Theory 389(12)
E.1 Stress and strain
389(2)
E.2 Small deflection of beams
391(3)
E.3 Vibration of beams
394(1)
E.4 Torsion
395(2)
E.5 Helical springs
397(1)
E.6 Contact stress: The Hertz formulas
398(3)
Bibliography 401(18)
Index 419
C. Julian Chen, Department of Applied Physics and Applied Mathematics, Columbia University, New York, USA.