Preface to the Second Edition |
|
xxiii | |
Preface to the First Edition |
|
xxvii | |
Gallery |
|
xxxiii | |
|
|
1 | (40) |
|
1.1 The scanning tunneling microscope |
|
|
1 | (2) |
|
1.2 The concept of tunneling |
|
|
3 | (9) |
|
1.2.1 Transmission coefficient |
|
|
3 | (3) |
|
1.2.2 Semiclassical approximation |
|
|
6 | (1) |
|
1.2.3 The Landauer theory |
|
|
6 | (4) |
|
1.2.4 Tunneling conductance |
|
|
10 | (2) |
|
1.3 Probing electronic structure at atomic scale |
|
|
12 | (9) |
|
1.3.1 Experimental observations |
|
|
15 | (3) |
|
1.3.2 Origin of atomic resolution in STM |
|
|
18 | (3) |
|
1.4 The atomic force microscope |
|
|
21 | (4) |
|
1.4.1 Atomic-scale imaging by AFM |
|
|
21 | (3) |
|
1.4.2 Role of covalent bonding in AFM imaging |
|
|
24 | (1) |
|
1.5 Illustrative applications |
|
|
25 | (20) |
|
|
25 | (4) |
|
1.5.2 Atomic-scale imaging at the liquid-solid interface |
|
|
29 | (4) |
|
|
33 | (2) |
|
1.5.4 Imaging and manipulating DNA using AFM |
|
|
35 | (6) |
Part I Principles |
|
41 | (200) |
|
Chapter 2 Tunneling Phenomenon |
|
|
45 | (32) |
|
2.1 The metalinsulatormetal tunneling junction |
|
|
46 | (2) |
|
2.2 The Bardeen theory of tunneling |
|
|
48 | (16) |
|
2.2.1 One-dimensional case |
|
|
48 | (4) |
|
2.2.2 Tunneling spectroscopy |
|
|
52 | (1) |
|
2.2.3 Energy dependence of tunneling matrix elements |
|
|
53 | (1) |
|
2.2.4 Asymmetry in tunneling spectrum |
|
|
54 | (3) |
|
2.2.5 Three-dimensional case |
|
|
57 | (2) |
|
|
59 | (1) |
|
2.2.7 Wavefunction correction |
|
|
60 | (1) |
|
2.2.8 The transfer-Hamiltonian formalism |
|
|
61 | (2) |
|
2.2.9 The tunneling matrix |
|
|
63 | (1) |
|
2.2.10 Relation to the Landauer theory |
|
|
64 | (1) |
|
|
64 | (5) |
|
|
65 | (1) |
|
2.3.2 Frequency condition |
|
|
66 | (1) |
|
2.3.3 Effect of finite temperature |
|
|
67 | (2) |
|
2.4 Spin-polarized tunneling |
|
|
69 | (8) |
|
|
70 | (2) |
|
2.4.2 The spin-valve effect |
|
|
72 | (4) |
|
2.4.3 Experimental observations |
|
|
76 | (1) |
|
Chapter 3 Tunneling Matrix Elements |
|
|
77 | (16) |
|
|
77 | (1) |
|
|
78 | (4) |
|
|
78 | (3) |
|
3.2.2 Tip wavefunctions as Green's functions |
|
|
81 | (1) |
|
3.3 The derivative rule: individual cases |
|
|
82 | (3) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
3.4 The derivative rule: general case |
|
|
85 | (6) |
|
3.5 An intuitive interpretation |
|
|
91 | (2) |
|
|
93 | (30) |
|
|
93 | (5) |
|
4.1.1 The van der Waals equation of state |
|
|
93 | (1) |
|
4.1.2 The origin of van der Waals force |
|
|
94 | (2) |
|
4.1.3 Van der Waals force between a tip and a sample |
|
|
96 | (2) |
|
|
98 | (1) |
|
|
98 | (2) |
|
4.4 The covalent bond: The concept |
|
|
100 | (15) |
|
4.4.1 Heisenberg's model of resonance |
|
|
101 | (3) |
|
4.4.2 The hydrogen molecule-ion |
|
|
104 | (1) |
|
4.4.3 Three regimes of interaction |
|
|
105 | (1) |
|
4.4.4 Van der Waals force |
|
|
106 | (1) |
|
4.4.5 Resonance energy as tunneling matrix element |
|
|
107 | (4) |
|
4.4.6 Evaluation of the modified Bardeen integral |
|
|
111 | (3) |
|
|
114 | (1) |
|
4.5 The covalent bond: Many-electron atoms |
|
|
115 | (8) |
|
4.5.1 The homonuclear diatomic molecules |
|
|
115 | (1) |
|
4.5.2 The perturbation approach |
|
|
115 | (3) |
|
4.5.3 Evaluation of the Bardeen Integral |
|
|
118 | (1) |
|
4.5.4 Comparison with experimental data |
|
|
119 | (4) |
|
Chapter 5 Atomic Forces and Tunneling |
|
|
123 | (26) |
|
5.1 The principle of equivalence |
|
|
123 | (3) |
|
|
126 | (5) |
|
5.2.1 The double-well problem |
|
|
126 | (2) |
|
5.2.2 Canonical transformation of the transfer Hamiltonian |
|
|
128 | (2) |
|
5.2.3 Diagonizing the tunneling matrix |
|
|
130 | (1) |
|
5.3 Case of a metal tip and a metal sample |
|
|
131 | (5) |
|
5.3.1 Van der Waals force |
|
|
132 | (1) |
|
5.3.2 Resonance energy between two metal electrodes |
|
|
132 | (3) |
|
5.3.3 A measurable consequence |
|
|
135 | (1) |
|
|
136 | (1) |
|
5.4 Experimental verifications |
|
|
136 | (9) |
|
5.4.1 An early experiment |
|
|
136 | (2) |
|
5.4.2 Experiments with frequency-modulation AFM |
|
|
138 | (2) |
|
5.4.3 Experiments with static AFM |
|
|
140 | (3) |
|
5.4.4 Non-contact atomic force spectroscopy |
|
|
143 | (2) |
|
5.5 Threshold resistance in atom manipulation |
|
|
145 | (4) |
|
Chapter 6 Nanometer-Scale Imaging |
|
|
149 | (20) |
|
6.1 Types of STM and AFM images |
|
|
149 | (2) |
|
6.2 The TersoffHamann model |
|
|
151 | (15) |
|
|
151 | (1) |
|
6.2.2 The original derivation |
|
|
152 | (3) |
|
6.2.3 Profiles of surface reconstructions |
|
|
155 | (3) |
|
6.2.4 Extension to finite bias voltages |
|
|
158 | (2) |
|
6.2.5 Surface states: the concept |
|
|
160 | (2) |
|
6.2.6 Surface states: STM observations |
|
|
162 | (4) |
|
6.2.7 Heterogeneous surfaces |
|
|
166 | (1) |
|
6.3 Limitations of the TersoffHamann model |
|
|
166 | (3) |
|
Chapter 7 Atomic-Scale Imaging |
|
|
169 | (50) |
|
|
170 | (4) |
|
7.1.1 Universality of atomic resolution |
|
|
170 | (1) |
|
7.1.2 Corrugation inversion |
|
|
170 | (1) |
|
7.1.3 Tip-state dependence |
|
|
171 | (2) |
|
7.1.4 Distance dependence of corrugation |
|
|
173 | (1) |
|
7.2 Intuitive explanations |
|
|
174 | (4) |
|
7.2.1 Sharpness of tip states |
|
|
174 | (1) |
|
|
175 | (2) |
|
7.2.3 Arguments based on the reciprocity principle |
|
|
177 | (1) |
|
|
178 | (20) |
|
7.3.1 A one-dimensional case |
|
|
178 | (4) |
|
7.3.2 Surfaces with hexagonal symmetry |
|
|
182 | (4) |
|
7.3.3 Corrugation inversion |
|
|
186 | (4) |
|
7.3.4 Profiles of atomic states as seen by STM |
|
|
190 | (4) |
|
7.3.5 Independent-orbital approximation |
|
|
194 | (4) |
|
7.4 First-principles studies: tip electronic states |
|
|
198 | (4) |
|
7.4.1 W clusters as STM tip models |
|
|
198 | (1) |
|
7.4.2 Density-functional study of a WCu STM junction |
|
|
199 | (1) |
|
7.4.3 Transition-metal pyramidal tips |
|
|
199 | (1) |
|
7.4.4 Transition-metal atoms adsorbed on W slabs |
|
|
200 | (2) |
|
7.5 First-principles studies: the images |
|
|
202 | (7) |
|
7.5.1 Transition-metal surfaces |
|
|
202 | (2) |
|
7.5.2 Atomic corrugation and surface waves |
|
|
204 | (1) |
|
7.5.3 Atom-resolved AFM images |
|
|
205 | (4) |
|
|
209 | (3) |
|
7.7 Chemical identification of surface atoms |
|
|
212 | (2) |
|
7.8 The principle of reciprocity |
|
|
214 | (5) |
|
Chapter 8 Nanomechanical Effects |
|
|
219 | (22) |
|
8.1 Mechanical stability of the tipsample junction |
|
|
220 | (11) |
|
8.1.1 Experimental observations |
|
|
220 | (3) |
|
8.1.2 Condition of mechanical stability |
|
|
223 | (6) |
|
8.1.3 Relaxation and the apparent G ~ z relation |
|
|
229 | (2) |
|
8.2 Mechanical effects on observed corrugations |
|
|
231 | (7) |
|
|
231 | (2) |
|
|
233 | (3) |
|
8.2.3 First-principles simulations |
|
|
236 | (1) |
|
|
237 | (1) |
|
8.2.5 The Pethica mechanism |
|
|
238 | (1) |
|
8.3 Force in tunneling-barrier measurements |
|
|
238 | (3) |
Part II Instrumentation |
|
241 | (130) |
|
Chapter 9 Piezoelectric Scanner |
|
|
245 | (24) |
|
|
245 | (4) |
|
9.1.1 Piezoelectric effect |
|
|
245 | (1) |
|
9.1.2 Inverse piezoelectric effect |
|
|
246 | (3) |
|
9.2 Piezoelectric materials in STM and AFM |
|
|
249 | (5) |
|
|
249 | (1) |
|
9.2.2 Lead zirconate titanate ceramics |
|
|
250 | (4) |
|
9.3 Piezoelectric devices in STM and AFM |
|
|
254 | (3) |
|
|
254 | (1) |
|
|
255 | (2) |
|
|
257 | (8) |
|
|
258 | (2) |
|
9.4.2 In situ testing and calibration |
|
|
260 | (3) |
|
9.4.3 Resonant frequencies |
|
|
263 | (1) |
|
9.4.4 Tilt compensation: the s-scanner |
|
|
264 | (1) |
|
9.4.5 Repolarizing a depolarized tube piezo |
|
|
265 | (1) |
|
|
265 | (4) |
|
Chapter 10 Vibration Isolation |
|
|
269 | (14) |
|
|
269 | (4) |
|
10.2 Environmental vibration |
|
|
273 | (4) |
|
10.2.1 Measurement method |
|
|
274 | (1) |
|
10.2.2 Vibration isolation of the foundation |
|
|
275 | (2) |
|
10.3 Vibrational immunity of STM |
|
|
277 | (1) |
|
10.4 Suspension-spring systems |
|
|
278 | (4) |
|
10.4.1 Analysis of two-stage systems |
|
|
278 | (2) |
|
|
280 | (1) |
|
10.4.3 Eddy-current damper |
|
|
281 | (1) |
|
|
282 | (1) |
|
Chapter 11 Electronics and Control |
|
|
283 | (16) |
|
|
283 | (6) |
|
11.1.1 Johnson noise and shot noise |
|
|
284 | (2) |
|
11.1.2 Frequency response |
|
|
286 | (1) |
|
|
287 | (1) |
|
11.1.4 Logarithmic amplifier |
|
|
288 | (1) |
|
|
289 | (8) |
|
11.2.1 Steady-state response |
|
|
290 | (2) |
|
11.2.2 Transient response |
|
|
292 | (5) |
|
|
297 | (2) |
|
11.3.1 Automatic approaching |
|
|
298 | (1) |
|
Chapter 12 Mechanical design |
|
|
299 | (14) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
301 | (1) |
|
12.4 The Besocke-type STM: the beetle |
|
|
302 | (3) |
|
|
305 | (1) |
|
|
306 | (2) |
|
|
308 | (1) |
|
|
309 | (4) |
|
|
313 | (18) |
|
|
313 | (1) |
|
13.2 Electrochemical tip etching |
|
|
314 | (3) |
|
13.3 Ex situ tip treatments |
|
|
317 | (7) |
|
|
317 | (1) |
|
13.3.2 Field evaporation and controlled deposition |
|
|
318 | (1) |
|
13.3.3 Annealing with a field |
|
|
319 | (1) |
|
13.3.4 Atomic metallic ion emission |
|
|
320 | (2) |
|
13.3.5 Field-assisted reaction with nitrogen |
|
|
322 | (2) |
|
13.4 In situ tip treatments |
|
|
324 | (2) |
|
13.4.1 High-field treatment |
|
|
324 | (1) |
|
13.4.2 Controlled collision |
|
|
325 | (1) |
|
13.5 Tip treatment for spin-polarized STM |
|
|
326 | (2) |
|
13.5.1 Coating the tip with ferromagnetic materials |
|
|
326 | (1) |
|
13.5.2 Coating the tip with antiferromagnetic materials |
|
|
327 | (1) |
|
13.5.3 Controlled collision with magnetic surfaces |
|
|
327 | (1) |
|
13.6 Tip preparation for electrochemistry STM |
|
|
328 | (3) |
|
Chapter 14 Scanning Tunneling Spectroscopy |
|
|
331 | (18) |
|
14.1 Electronics for scanning tunneling spectroscopy |
|
|
331 | (1) |
|
14.2 Nature of the observed tunneling spectra |
|
|
332 | (2) |
|
14.3 Tip treatment for spectroscopy studies |
|
|
334 | (3) |
|
|
334 | (2) |
|
14.3.2 Controlled collision with a metal surface |
|
|
336 | (1) |
|
14.4 The Feenstra parameter |
|
|
337 | (1) |
|
14.5 Determination of the tip DOS |
|
|
338 | (6) |
|
|
338 | (2) |
|
|
340 | (4) |
|
14.6 Inelastic scanning tunneling spectroscopy |
|
|
344 | (5) |
|
|
344 | (1) |
|
14.6.2 Effect of finite modulation voltage |
|
|
345 | (2) |
|
14.6.3 Experimental observations |
|
|
347 | (2) |
|
Chapter 15 Atomic Force Microscopy |
|
|
349 | (32) |
|
15.1 Static mode and dynamic mode |
|
|
350 | (1) |
|
|
351 | (3) |
|
15.2.1 Basic requirements |
|
|
351 | (1) |
|
|
352 | (2) |
|
15.3 Static force detection |
|
|
354 | (3) |
|
15.3.1 Optical beam deflection |
|
|
354 | (2) |
|
15.3.2 Optical interferometry |
|
|
356 | (1) |
|
|
357 | (4) |
|
15.4.1 Acoustic actuation in liquids |
|
|
358 | (1) |
|
15.4.2 Magnetic actuation in liquids |
|
|
359 | (2) |
|
|
361 | (10) |
|
15.5.1 Case of small amplitude |
|
|
361 | (3) |
|
15.5.2 Case of finite amplitude |
|
|
364 | (1) |
|
15.5.3 Response function for frequency shift |
|
|
365 | (1) |
|
|
366 | (2) |
|
15.5.5 Average tunneling current |
|
|
368 | (1) |
|
|
369 | (2) |
Appendix A: Green's Functions |
|
371 | (2) |
Appendix B: Real Spherical Harmonics |
|
373 | (4) |
Appendix C: Spherical Modified Bessel Functions |
|
377 | (4) |
Appendix D: Plane Groups and Invariant Functions |
|
381 | (8) |
|
D.1 A brief summary of plane groups |
|
|
382 | (3) |
|
|
385 | (4) |
Appendix E: Elementary Elasticity Theory |
|
389 | (12) |
|
|
389 | (2) |
|
E.2 Small deflection of beams |
|
|
391 | (3) |
|
|
394 | (1) |
|
|
395 | (2) |
|
|
397 | (1) |
|
E.6 Contact stress: The Hertz formulas |
|
|
398 | (3) |
Bibliography |
|
401 | (18) |
Index |
|
419 | |