Preface to the Second Edition |
|
xxiii | |
Preface to the First Edition |
|
xxvii | |
Gallery |
|
xxxiii | |
|
|
1 | (40) |
|
The scanning tunneling microscope |
|
|
1 | (2) |
|
|
3 | (9) |
|
|
3 | (3) |
|
Semiclassical approximation |
|
|
6 | (1) |
|
|
6 | (4) |
|
|
10 | (2) |
|
Probing electronic structure at atomic scale |
|
|
12 | (9) |
|
Experimental observations |
|
|
15 | (3) |
|
Origin of atomic resolution in STM |
|
|
18 | (3) |
|
The atomic force microscope |
|
|
21 | (4) |
|
Atomic-scale imaging by AFM |
|
|
21 | (3) |
|
Role of covalent bonding in AFM imaging |
|
|
24 | (1) |
|
Illustrative applications |
|
|
25 | (16) |
|
|
25 | (4) |
|
Atomic-scale imaging at the liquid-solid interface |
|
|
29 | (4) |
|
|
33 | (2) |
|
Imaging and manipulating DNA using AFM |
|
|
35 | (6) |
|
|
41 | (200) |
|
|
45 | (32) |
|
The metal-insulator-metal tunneling junction |
|
|
46 | (2) |
|
The Bardeen theory of tunneling |
|
|
48 | (16) |
|
|
48 | (4) |
|
|
52 | (1) |
|
Energy dependence of tunneling matrix elements |
|
|
53 | (1) |
|
Asymmetry in tunneling spectrum |
|
|
54 | (3) |
|
|
57 | (2) |
|
|
59 | (1) |
|
|
60 | (1) |
|
The transfer-Hamiltonian formalism |
|
|
61 | (2) |
|
|
63 | (1) |
|
Relation to the Landauer theory |
|
|
64 | (1) |
|
|
64 | (5) |
|
|
65 | (1) |
|
|
66 | (1) |
|
Effect of finite temperature |
|
|
67 | (2) |
|
|
69 | (8) |
|
|
70 | (2) |
|
|
72 | (4) |
|
Experimental observations |
|
|
76 | (1) |
|
Tunneling Matrix Elements |
|
|
77 | (16) |
|
|
77 | (1) |
|
|
78 | (4) |
|
|
78 | (3) |
|
Tip wavefunctions as Green's functions |
|
|
81 | (1) |
|
The derivative rule: individual cases |
|
|
82 | (3) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
The derivative rule: general case |
|
|
85 | (6) |
|
An intuitive interpretation |
|
|
91 | (2) |
|
|
93 | (30) |
|
|
93 | (5) |
|
The van der Waals equation of state |
|
|
93 | (1) |
|
The origin of van der Waals force |
|
|
94 | (2) |
|
Van der Waals force between a tip and a sample |
|
|
96 | (2) |
|
|
98 | (1) |
|
|
98 | (2) |
|
The covalent bond: The concept |
|
|
100 | (15) |
|
Heisenberg's model of resonance |
|
|
101 | (3) |
|
The hydrogen molecule-ion |
|
|
104 | (1) |
|
Three regimes of interaction |
|
|
105 | (1) |
|
|
106 | (1) |
|
Resonance energy as tunneling matrix element |
|
|
107 | (4) |
|
Evaluation of the modified Bardeen integral |
|
|
111 | (3) |
|
|
114 | (1) |
|
The covalent bond: Many-electron atoms |
|
|
115 | (8) |
|
The homonuclear diatomic molecules |
|
|
115 | (1) |
|
The perturbation approach |
|
|
115 | (3) |
|
Evaluation of the Bardeen Integral |
|
|
118 | (1) |
|
Comparison with experimental data |
|
|
119 | (4) |
|
Atomic Forces and Tunneling |
|
|
123 | (26) |
|
The principle of equivalence |
|
|
123 | (3) |
|
|
126 | (5) |
|
|
126 | (2) |
|
Canonical transformation of the transfer Hamiltonian |
|
|
128 | (2) |
|
Diagonizing the tunneling matrix |
|
|
130 | (1) |
|
Case of a metal tip and a metal sample |
|
|
131 | (5) |
|
|
132 | (1) |
|
Resonance energy between two metal electrodes |
|
|
132 | (3) |
|
|
135 | (1) |
|
|
136 | (1) |
|
Experimental verifications |
|
|
136 | (9) |
|
|
136 | (2) |
|
Experiments with frequency-modulation AFM |
|
|
138 | (2) |
|
Experiments with static AFM |
|
|
140 | (3) |
|
Non-contact atomic force spectroscopy |
|
|
143 | (2) |
|
Threshold resistance in atom manipulation |
|
|
145 | (4) |
|
|
149 | (20) |
|
Types of STM and AFM images |
|
|
149 | (2) |
|
|
151 | (15) |
|
|
151 | (1) |
|
|
152 | (3) |
|
Profiles of surface reconstructions |
|
|
155 | (3) |
|
Extension to finite bias voltages |
|
|
158 | (2) |
|
Surface states: the concept |
|
|
160 | (2) |
|
Surface states: STM observations |
|
|
162 | (4) |
|
|
166 | (1) |
|
Limitations of the Tersoff-Hamann model |
|
|
166 | (3) |
|
|
169 | (50) |
|
|
170 | (4) |
|
Universality of atomic resolution |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
171 | (2) |
|
Distance dependence of corrugation |
|
|
173 | (1) |
|
|
174 | (4) |
|
|
174 | (1) |
|
|
175 | (2) |
|
Arguments based on the reciprocity principle |
|
|
177 | (1) |
|
|
178 | (20) |
|
|
178 | (4) |
|
Surfaces with hexagonal symmetry |
|
|
182 | (4) |
|
|
186 | (4) |
|
Profiles of atomic states as seen by STM |
|
|
190 | (4) |
|
Independent-orbital approximation |
|
|
194 | (4) |
|
First-principles studies: tip electronic states |
|
|
198 | (4) |
|
W clusters as STM tip models |
|
|
198 | (1) |
|
Density-functional study of a W-Cu STM junction |
|
|
199 | (1) |
|
Transition-metal pyramidal tips |
|
|
199 | (1) |
|
Transition-metal atoms adsorbed on W slabs |
|
|
200 | (2) |
|
First-principles studies: the images |
|
|
202 | (7) |
|
Transition-metal surfaces |
|
|
202 | (2) |
|
Atomic corrugation and surface waves |
|
|
204 | (1) |
|
|
205 | (4) |
|
|
209 | (3) |
|
Chemical identification of surface atoms |
|
|
212 | (2) |
|
The principle of reciprocity |
|
|
214 | (5) |
|
|
219 | (22) |
|
Mechanical stability of the tip-sample junction |
|
|
220 | (11) |
|
Experimental observations |
|
|
220 | (3) |
|
Condition of mechanical stability |
|
|
223 | (6) |
|
Relaxation and the apparent G ~ z relation |
|
|
229 | (2) |
|
Mechanical effects on observed corrugations |
|
|
231 | (7) |
|
|
231 | (2) |
|
|
233 | (3) |
|
First-principles simulations |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
Force in tunneling-barrier measurements |
|
|
238 | (3) |
|
|
241 | (130) |
|
|
245 | (24) |
|
|
245 | (4) |
|
|
245 | (1) |
|
Inverse piezoelectric effect |
|
|
246 | (3) |
|
Piezoelectric materials in STM and AFM |
|
|
249 | (5) |
|
|
249 | (1) |
|
Lead zirconate titanate ceramics |
|
|
250 | (4) |
|
Piezoelectric devices in STM and AFM |
|
|
254 | (3) |
|
|
254 | (1) |
|
|
255 | (2) |
|
|
257 | (8) |
|
|
258 | (2) |
|
In situ testing and calibration |
|
|
260 | (3) |
|
|
263 | (1) |
|
Tilt compensation: the s-scanner |
|
|
264 | (1) |
|
Repolarizing a depolarized tube piezo |
|
|
265 | (1) |
|
|
265 | (4) |
|
|
269 | (14) |
|
|
269 | (4) |
|
|
273 | (4) |
|
|
274 | (1) |
|
Vibration isolation of the foundation |
|
|
275 | (2) |
|
Vibrational immunity of STM |
|
|
277 | (1) |
|
Suspension-spring systems |
|
|
278 | (4) |
|
Analysis of two-stage systems |
|
|
278 | (2) |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
283 | (16) |
|
|
283 | (6) |
|
Johnson noise and shot noise |
|
|
284 | (2) |
|
|
286 | (1) |
|
|
287 | (1) |
|
|
288 | (1) |
|
|
289 | (8) |
|
|
290 | (2) |
|
|
292 | (5) |
|
|
297 | (2) |
|
|
298 | (1) |
|
|
299 | (14) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
301 | (1) |
|
The Besocke-type STM: the beetle |
|
|
302 | (3) |
|
|
305 | (1) |
|
|
306 | (2) |
|
|
308 | (1) |
|
|
309 | (4) |
|
|
313 | (18) |
|
|
313 | (1) |
|
Electrochemical tip etching |
|
|
314 | (3) |
|
|
317 | (7) |
|
|
317 | (1) |
|
Field evaporation and controlled deposition |
|
|
318 | (1) |
|
|
319 | (1) |
|
Atomic metallic ion emission |
|
|
320 | (2) |
|
Field-assisted reaction with nitrogen |
|
|
322 | (2) |
|
|
324 | (2) |
|
|
324 | (1) |
|
|
325 | (1) |
|
Tip treatment for spin-polarized STM |
|
|
326 | (2) |
|
Coating the tip with ferromagnetic materials |
|
|
326 | (1) |
|
Coating the tip with antiferromagnetic materials |
|
|
327 | (1) |
|
Controlled collision with magnetic surfaces |
|
|
327 | (1) |
|
Tip preparation for electrochemistry STM |
|
|
328 | (3) |
|
Scanning Tunneling Spectroscopy |
|
|
331 | (18) |
|
Electronics for scanning tunneling spectroscopy |
|
|
331 | (1) |
|
Nature of the observed tunneling spectra |
|
|
332 | (2) |
|
Tip treatment for spectroscopy studies |
|
|
334 | (3) |
|
|
334 | (2) |
|
Controlled collision with a metal surface |
|
|
336 | (1) |
|
|
337 | (1) |
|
Determination of the tip DOS |
|
|
338 | (6) |
|
|
338 | (2) |
|
|
340 | (4) |
|
Inelastic scanning tunneling spectroscopy |
|
|
344 | (5) |
|
|
344 | (1) |
|
Effect of finite modulation voltage |
|
|
345 | (2) |
|
Experimental observations |
|
|
347 | (2) |
|
|
349 | (22) |
|
Static mode and dynamic mode |
|
|
350 | (1) |
|
|
351 | (3) |
|
|
351 | (1) |
|
|
352 | (2) |
|
|
354 | (3) |
|
|
354 | (2) |
|
|
356 | (1) |
|
|
357 | (4) |
|
Acoustic actuation in liquids |
|
|
358 | (1) |
|
Magnetic actuation in liquids |
|
|
359 | (2) |
|
|
361 | (10) |
|
|
361 | (3) |
|
|
364 | (1) |
|
Response function for frequency shift |
|
|
365 | (1) |
|
|
366 | (2) |
|
Average tunneling current |
|
|
368 | (1) |
|
|
369 | (2) |
|
Appendix A: Green's Functions |
|
|
371 | (2) |
|
Appendix B: Real Spherical Harmonics |
|
|
373 | (4) |
|
Appendix C: Spherical Modified Bessel Functions |
|
|
377 | (4) |
|
Appendix D: Plane Groups and Invariant Functions |
|
|
381 | (8) |
|
A brief summary of plane groups |
|
|
382 | (3) |
|
|
385 | (4) |
|
Appendix E: Elementary Elasticity Theory |
|
|
389 | (9) |
|
|
389 | (2) |
|
Small deflection of beams |
|
|
391 | (3) |
|
|
394 | (1) |
|
|
395 | (2) |
|
|
397 | (1) |
|
Contact stress: The Hertz formulas |
|
|
398 | |