Atnaujinkite slapukų nuostatas

Local Cohomology: An Algebraic Introduction with Geometric Applications [Minkštas viršelis]

(Universität Zürich), (University of Sheffield)
  • Formatas: Paperback / softback, 436 pages, aukštis x plotis x storis: 229x153x26 mm, weight: 658 g, 6 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 26-Nov-2007
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521047587
  • ISBN-13: 9780521047586
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 436 pages, aukštis x plotis x storis: 229x153x26 mm, weight: 658 g, 6 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 26-Nov-2007
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521047587
  • ISBN-13: 9780521047586
Kitos knygos pagal šią temą:
A graduate text covering Grothendieck's local cohomology theory.

This book provides a careful and detailed algebraic introduction to Grothendieck's local cohomology theory, and illustrates many applications for the theory in commutative algebra and in the geometry of quasi-affine and quasi-projective varieties. Topics covered include Castelnuovo-Mumford regularity, the Fulton-Hansen connectedness theorem for projective varieties, and connections between local cohomology and both reductions of ideals and sheaf cohomology. It is designed for graduate students who have some experience of basic commutative algebra and homological algebra, and also for experts in commutative algebra and algebraic geometry.

Recenzijos

' a careful and detailed algebraic introduction to Grothendieck's local cohomology theory.' L'Enseignment Mathématique 'The book is well organised, very nicely written, and reads very well a very good overview of local cohomology theory.' European Mathematical Society 'I am sure that this will be a standard text and reference book for years to come.' Liam O'Carroll, Bull. London Mathematical Society

Daugiau informacijos

A graduate text covering Grothendieck's local cohomology theory.
Preface; Notation and conventions;
1. The local cohomology functors;
2.
Torsion modules and ideal transforms;
3. The MayerVietoris Sequence;
4.
Change of rings;
5. Other approaches;
6. Fundamental vanishing theorems;
7.
Artinian local cohomology modules;
8. The LichtenbaumHartshorne theorem;
9.
The Annihilator and Finiteness Theorems;
10. Matlis duality;
11. Local
duality;
12. Foundations in the graded case;
13. Graded versions of basic
theorems;
14. Links with projective varieties;
15. Castelnuovo regularity;
16. Bounds of diagonal type;
17. Hilbert polynomials;
18. Applications to
reductions of ideals;
19. Connectivity in algebraic varieties;
20. Links with
sheaf cohomology; Bibliography; Index.