Atnaujinkite slapukų nuostatas

Local Cohomology: An Algebraic Introduction with Geometric Applications [Kietas viršelis]

(Universität Zürich), (University of Sheffield)
  • Formatas: Hardback, 436 pages, aukštis x plotis x storis: 236x158x31 mm, weight: 783 g, 6 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 19-Mar-1998
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521372860
  • ISBN-13: 9780521372862
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 436 pages, aukštis x plotis x storis: 236x158x31 mm, weight: 783 g, 6 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 19-Mar-1998
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521372860
  • ISBN-13: 9780521372862
Kitos knygos pagal šią temą:
A graduate text covering Grothendieck's local cohomology theory.

This book provides a careful and detailed algebraic introduction to Grothendieck's local cohomology theory, and illustrates many applications for the theory in commutative algebra and in the geometry of quasi-affine and quasi-projective varieties. Topics covered include Castelnuovo-Mumford regularity, the Fulton-Hansen connectedness theorem for projective varieties, and connections between local cohomology and both reductions of ideals and sheaf cohomology. It is designed for graduate students who have some experience of basic commutative algebra and homological algebra, and also for experts in commutative algebra and algebraic geometry.

Recenzijos

' a careful and detailed algebraic introduction to Grothendieck's local cohomology theory.' L'Enseignment Mathématique 'The book is well organised, very nicely written, and reads very well a very good overview of local cohomology theory.' European Mathematical Society 'I am sure that this will be a standard text and reference book for years to come.' Liam O'Carroll, Bull. London Mathematical Society

Daugiau informacijos

A graduate text covering Grothendieck's local cohomology theory.
Preface ix(5)
Notation and conventions xiv
1 The local cohomology functors
1(16)
1.1 Torsion functors
1(2)
1.2 Local cohomology modules
3(7)
1.3 Connected sequences of functors
10(7)
2 Torsion modules and ideal transforms
17(36)
2.1 Torsion modules
18(4)
2.2 Ideal transforms
22(16)
2.3 Geometrical significance
38(9)
3 The Mayer-Vietoris Sequence
47(19)
3.1 Comparison of systems of ideals
48(3)
3.2 Construction of the sequence
51(4)
3.3 Arithmetic rank
55(4)
3.4 Direct limits
59(7)
4 Change of rings
66(16)
4.1 Some acyclic modules
67(4)
4.2 The Independence Theorem
71(4)
4.3 The Flat Base Change Theorem
75(7)
5 Other approaches
82(20)
5.1 Use of Cech complexes
83(11)
5.2 Use of Koszul complexes
94(8)
6 Fundamental vanishing theorems
102(21)
6.1 Grothendieck's Vanishing Theorem
103(4)
6.2 Connections with grade
107(5)
6.3 Exactness of ideal transforms
112(5)
6.4 An Affineness Criterion due to Serre
117(6)
7 Artinian local cohomology modules
123(13)
7.1 Artinian modules
123(4)
7.2 Secondary representation
127(4)
7.3 The Non-vanishing Theorem again
131(5)
8 The Lichtenbaum-Hartshorne Theorem
136(16)
8.1 Preparatory lemmas
137(7)
8.2 The main theorem
144(8)
9 The Annihilator and Finiteness Theorems
152(27)
9.1 Finiteness dimensions
152(3)
9.2 Adjusted depths
155(4)
9.3 The first inequality
159(4)
9.4 The second inequality
163(7)
9.5 The main theorems
170(5)
9.6 Extensions
175(4)
10 Matlis duality
179(18)
10.1 Indecomposable injective modules
179(6)
10.2 Matlis duality
185(12)
11 Local duality
197(19)
11.1 Minimal injective resolutions
198(3)
11.2 Local Duality Theorems
201(6)
11.3 Some applications
207(9)
12 Foundations in the graded case
216(21)
12.1 (*)Injective modules
217(4)
12.2 The (*)restriction property
221(4)
12.3 The reconciliation
225(4)
12.4 Some examples and applications
229(8)
13 Graded versions of basic theorems
237(28)
13.1 Fundamental theorems
237(9)
13.2 (*)Indecomposable *injective modules
246(7)
13.3 (*)Canonical modules
253(5)
13.4 Graded local duality
258(7)
14 Links with projective varieties
265(12)
14.1 Affine algebraic cones
265(4)
14.2 Projective varieties
269(8)
15 Castelnuovo regularity
277(17)
15.1 Finitely generated components
277(4)
15.2 The basics of Castelnuovo regularity
281(8)
15.3 Degrees of generators
289(5)
16 Bounds of diagonal type
294(18)
16.1 Some basic lemmas
295(4)
16.2 The right bounding functions
299(6)
16.3 Polynomial representations
305(4)
16.4 Bounding systems for numerical invariants
309(3)
17 Hilbert polynomials
312(13)
17.1 The characteristic function
313(6)
17.2 Bounds in terms of Hilbert coefficients
319(6)
18 Applications to reductions of ideals
325(17)
18.1 Reductions and integral closures
325(5)
18.2 The analytic spread
330(3)
18.3 Links with Castelnuovo regularity
333(9)
19 Connectivity in algebraic varieties
342(32)
19.1 The connectedness dimension
342(5)
19.2 Complete local rings and connectivity
347(5)
19.3 Some local dimensions
352(7)
19.4 Connectivity of affine algebraic cones
359(1)
19.5 Connectivity of projective varieties
360(3)
19.6 Connectivity of intersections
363(5)
19.7 The projective spectrum and connectedness
368(6)
20 Links with sheaf cohomology
374(33)
20.1 The Deligne Isomorphism
375(11)
20.2 The graded Deligne Isomorphism
386(3)
20.3 Links with sheaf theory
389(9)
20.4 Applications to projective schemes
398(9)
Bibliography 407(3)
Index 410