Atnaujinkite slapukų nuostatas

El. knyga: Magnetorheological Fluid Technology: Applications in Vehicle Systems

(Inha University, Incheon, South Korea), (Ajou Motor College, Chungnam, South Korea)
  • Formatas: 322 pages
  • Išleidimo metai: 08-Nov-2012
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040064283
  • Formatas: 322 pages
  • Išleidimo metai: 08-Nov-2012
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781040064283

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Magnetorheological Fluid Technology: Applications in Vehicle Systems compiles the authors recent work involving the application of magnetorheological (MR) fluids and other smart materials in vehicles. It collects concepts that have previously been scattered in peer-reviewed international journals.

After introducing the physical phenomena and properties of MR fluids, the book presents control methodologies for effectively controlling vehicle devices and systems featuring MR fluids. The authors also introduce the hysteresis identification of MR fluid and discuss its application through the adoption of the Preisach and polynomial models. They then describe the application of MR-equipped suspension systems in passenger, tracked, and railway vehicles; the application of MR brake systems in passenger vehicles, motorcycles, and bicycles; and the application of several MR technologies in heavy vehicles. The final chapter explores the use of haptic technologies for easily operating vehicle instruments and achieving optimal gear shifting with accelerator pedals.

Assuming some technical and mathematical background in vibration, dynamics, and control, this book is designed for scientists and engineers looking to create new devices or systems for vehicles featuring controllable MR fluids. It is also suitable for graduate students who are interested in the dynamic modeling and control methodology of vehicle devices and systems associated with MR fluid technology.

Recenzijos

"This book is very useful to a wide range of readers, such as senior postgraduates, postgraduates, junior researchers, industry engineers, and academics. ... It will make an immediate contribution to the development and implementation of MR devices in vehicle applications." Weihua Li, University of Wollongong, Australia "This book is very useful to a wide range of readers, such as senior postgraduates, postgraduates, junior researchers, industry engineers, and academics. ... It will make an immediate contribution to the development and implementation of MR devices in vehicle applications."Weihua Li, University of Wollongong, Australia

Preface ix
The Authors xi
1 Magnetorheological Fluid
1(16)
1.1 Physical Properties
1(4)
1.2 Potential Applications
5(12)
References
11(6)
2 Control Strategies
17(16)
2.1 Introduction
17(1)
2.2 Semi-Active Control
17(5)
2.3 PID Control
22(3)
2.4 LQ Control
25(2)
2.5 Sliding Mode Control
27(6)
References
30(3)
3 Hysteretic Behaviors of Magnetorheological (MR) Fluid
33(30)
3.1 Introduction
33(2)
3.2 Preisach Hysteresis Model Identification
35(17)
3.2.1 Hysteresis Phenomenon
35(6)
3.2.2 Preisach Model
41(4)
3.2.3 Hysteresis Identification and Compensation
45(7)
3.3 Polynomial Hysteresis Model Identification
52(8)
3.3.1 Hysteresis Phenomenon
52(1)
3.3.2 Polynomial Model
53(3)
3.3.3 Hysteresis Identification and Compensation
56(4)
3.4 Some Final Thoughts
60(3)
References
61(2)
4 Magnetorheological (MR) Suspension System for Passenger Vehicles
63(62)
4.1 Introduction
63(3)
4.2 Optimal Design
66(18)
4.2.1 Configuration and Modeling
66(5)
4.2.2 Design Optimization
71(4)
4.2.3 Optimization Results
75(9)
4.3 Damping Force Control
84(21)
4.3.1 MR Damper
84(3)
4.3.2 Preisach Model
87(5)
4.3.3 Controller Formulation
92(2)
4.3.3.1 Biviscous model
94(1)
4.3.3.2 Inverse Bingham model
95(1)
4.3.3.3 Preisach hysteresis compensator
96(1)
4.3.4 Control Results
97(8)
4.4 Full-Vehicle Test
105(15)
4.4.1 MR Damper
105(4)
4.4.2 Full-Vehicle Suspension
109(4)
4.4.3 Controller Design
113(4)
4.4.4 Performance Evaluation
117(3)
4.5 Some Final Thoughts
120(5)
References
122(3)
5 Magnetorheological (MR) Suspension System for Tracked and Railway Vehicles
125(26)
5.1 Introduction
125(1)
5.2 Tracked Vehicles
126(14)
5.2.1 System Modeling
126(4)
5.2.2 Optimal Design of the MR Valve
130(5)
5.2.3 Vibration Control Results
135(5)
5.3 Railway Vehicles
140(8)
5.3.1 System Modeling
140(5)
5.3.2 Vibration Control Results
145(3)
5.4 Some Final Thoughts
148(3)
References
149(2)
6 MR Applications for Vibration and Impact Control
151(28)
6.1 Introduction
151(1)
6.2 MR Engine Mount
152(15)
6.2.1 Configuration and Modeling
152(4)
6.2.2 Full-Vehicle Model
156(6)
6.2.3 Control Responses
162(5)
6.3 MR Impact Damper
167(7)
6.3.1 Dynamic Modeling
167(4)
6.3.2 Collision Mitigation
171(3)
6.4 Some Final Thoughts
174(5)
References
175(4)
7 Magnetorheological (MR) Brake System
179(44)
7.1 Introduction
179(3)
7.2 Bi-directional MR Brake
182(22)
7.2.1 Configuration and Torque Modeling
182(3)
7.2.2 Magnetic Circuit
185(7)
7.2.3 Optimal Design
192(3)
7.2.4 Results and Discussions
195(9)
7.3 Torsional MR Brake
204(15)
7.3.1 Control System of Torsional Vibration
204(3)
7.3.2 Optimal Design
207(6)
7.3.3 Results and Discussions
213(6)
7.4 Some Final Thoughts
219(4)
References
220(3)
8 Magnetorheological (MR) Applications for Heavy Vehicles
223(32)
8.1 Introduction
223(2)
8.2 MR Fan Clutch
225(16)
8.2.1 Design Optimization
225(9)
8.2.2 Controller Formulation
234(3)
8.2.3 Experimental Results
237(4)
8.3 MR Seat Damper
241(11)
8.3.1 Damper Design
241(3)
8.3.2 System Modeling
244(3)
8.3.3 Vibration Control Results
247(5)
8.4 Some Final Thoughts
252(3)
References
253(2)
9 Haptic Applications for Vehicles
255(46)
9.1 Introduction
255(2)
9.2 Multi-Functional MR Control Knob
257(19)
9.2.1 Configuration
257(2)
9.2.2 Design Optimization
259(5)
9.2.3 Haptic Architecture
264(6)
9.2.4 Performance Evaluation
270(6)
9.3 MR Haptic Cue Accelerator
276(21)
9.3.1 Configuration and Optimization
276(6)
9.3.2 Automotive Engine-Transmission Model
282(5)
9.3.3 Haptic Architecture
287(3)
9.3.4 Performance Evaluation
290(7)
9.4 Some Final Thoughts
297(4)
References
297(4)
Index 301
Young-Min Han, Seung-Bok Choi