Preface |
|
ix | |
The Authors |
|
xi | |
|
1 Magnetorheological Fluid |
|
|
1 | (16) |
|
|
1 | (4) |
|
1.2 Potential Applications |
|
|
5 | (12) |
|
|
11 | (6) |
|
|
17 | (16) |
|
|
17 | (1) |
|
|
17 | (5) |
|
|
22 | (3) |
|
|
25 | (2) |
|
|
27 | (6) |
|
|
30 | (3) |
|
3 Hysteretic Behaviors of Magnetorheological (MR) Fluid |
|
|
33 | (30) |
|
|
33 | (2) |
|
3.2 Preisach Hysteresis Model Identification |
|
|
35 | (17) |
|
3.2.1 Hysteresis Phenomenon |
|
|
35 | (6) |
|
|
41 | (4) |
|
3.2.3 Hysteresis Identification and Compensation |
|
|
45 | (7) |
|
3.3 Polynomial Hysteresis Model Identification |
|
|
52 | (8) |
|
3.3.1 Hysteresis Phenomenon |
|
|
52 | (1) |
|
|
53 | (3) |
|
3.3.3 Hysteresis Identification and Compensation |
|
|
56 | (4) |
|
|
60 | (3) |
|
|
61 | (2) |
|
4 Magnetorheological (MR) Suspension System for Passenger Vehicles |
|
|
63 | (62) |
|
|
63 | (3) |
|
|
66 | (18) |
|
4.2.1 Configuration and Modeling |
|
|
66 | (5) |
|
4.2.2 Design Optimization |
|
|
71 | (4) |
|
4.2.3 Optimization Results |
|
|
75 | (9) |
|
4.3 Damping Force Control |
|
|
84 | (21) |
|
|
84 | (3) |
|
|
87 | (5) |
|
4.3.3 Controller Formulation |
|
|
92 | (2) |
|
|
94 | (1) |
|
4.3.3.2 Inverse Bingham model |
|
|
95 | (1) |
|
4.3.3.3 Preisach hysteresis compensator |
|
|
96 | (1) |
|
|
97 | (8) |
|
|
105 | (15) |
|
|
105 | (4) |
|
4.4.2 Full-Vehicle Suspension |
|
|
109 | (4) |
|
|
113 | (4) |
|
4.4.4 Performance Evaluation |
|
|
117 | (3) |
|
|
120 | (5) |
|
|
122 | (3) |
|
5 Magnetorheological (MR) Suspension System for Tracked and Railway Vehicles |
|
|
125 | (26) |
|
|
125 | (1) |
|
|
126 | (14) |
|
|
126 | (4) |
|
5.2.2 Optimal Design of the MR Valve |
|
|
130 | (5) |
|
5.2.3 Vibration Control Results |
|
|
135 | (5) |
|
|
140 | (8) |
|
|
140 | (5) |
|
5.3.2 Vibration Control Results |
|
|
145 | (3) |
|
|
148 | (3) |
|
|
149 | (2) |
|
6 MR Applications for Vibration and Impact Control |
|
|
151 | (28) |
|
|
151 | (1) |
|
|
152 | (15) |
|
6.2.1 Configuration and Modeling |
|
|
152 | (4) |
|
|
156 | (6) |
|
|
162 | (5) |
|
|
167 | (7) |
|
|
167 | (4) |
|
6.3.2 Collision Mitigation |
|
|
171 | (3) |
|
|
174 | (5) |
|
|
175 | (4) |
|
7 Magnetorheological (MR) Brake System |
|
|
179 | (44) |
|
|
179 | (3) |
|
7.2 Bi-directional MR Brake |
|
|
182 | (22) |
|
7.2.1 Configuration and Torque Modeling |
|
|
182 | (3) |
|
|
185 | (7) |
|
|
192 | (3) |
|
7.2.4 Results and Discussions |
|
|
195 | (9) |
|
|
204 | (15) |
|
7.3.1 Control System of Torsional Vibration |
|
|
204 | (3) |
|
|
207 | (6) |
|
7.3.3 Results and Discussions |
|
|
213 | (6) |
|
|
219 | (4) |
|
|
220 | (3) |
|
8 Magnetorheological (MR) Applications for Heavy Vehicles |
|
|
223 | (32) |
|
|
223 | (2) |
|
|
225 | (16) |
|
8.2.1 Design Optimization |
|
|
225 | (9) |
|
8.2.2 Controller Formulation |
|
|
234 | (3) |
|
8.2.3 Experimental Results |
|
|
237 | (4) |
|
|
241 | (11) |
|
|
241 | (3) |
|
|
244 | (3) |
|
8.3.3 Vibration Control Results |
|
|
247 | (5) |
|
|
252 | (3) |
|
|
253 | (2) |
|
9 Haptic Applications for Vehicles |
|
|
255 | (46) |
|
|
255 | (2) |
|
9.2 Multi-Functional MR Control Knob |
|
|
257 | (19) |
|
|
257 | (2) |
|
9.2.2 Design Optimization |
|
|
259 | (5) |
|
9.2.3 Haptic Architecture |
|
|
264 | (6) |
|
9.2.4 Performance Evaluation |
|
|
270 | (6) |
|
9.3 MR Haptic Cue Accelerator |
|
|
276 | (21) |
|
9.3.1 Configuration and Optimization |
|
|
276 | (6) |
|
9.3.2 Automotive Engine-Transmission Model |
|
|
282 | (5) |
|
9.3.3 Haptic Architecture |
|
|
287 | (3) |
|
9.3.4 Performance Evaluation |
|
|
290 | (7) |
|
|
297 | (4) |
|
|
297 | (4) |
Index |
|
301 | |