Preface |
|
xi | |
I Introduction to variational inequalities |
|
1 | (80) |
|
1 Preliminaries on functional analysis |
|
|
3 | (30) |
|
|
3 | (8) |
|
|
3 | (3) |
|
1.1.2 Linear continuous operators |
|
|
6 | (2) |
|
1.1.3 Fixed point theorems |
|
|
8 | (3) |
|
|
11 | (8) |
|
1.2.1 Projection operators |
|
|
11 | (4) |
|
|
15 | (2) |
|
1.2.3 Duality and weak convergence |
|
|
17 | (2) |
|
1.3 Elements of nonlinear analysis |
|
|
19 | (14) |
|
|
19 | (5) |
|
1.3.2 Convex lower semicontinuous functions |
|
|
24 | (5) |
|
1.3.3 Minimization problems |
|
|
29 | (4) |
|
2 Elliptic variational inequalities |
|
|
33 | (24) |
|
2.1 Variational inequalities of the first kind |
|
|
33 | (7) |
|
2.1.1 Existence and uniqueness |
|
|
34 | (1) |
|
|
35 | (5) |
|
2.2 Variational inequalities of the second kind |
|
|
40 | (9) |
|
2.2.1 Existence and uniqueness |
|
|
40 | (2) |
|
2.2.2 A convergence result |
|
|
42 | (1) |
|
|
43 | (6) |
|
2.3 Quasivariational inequalities |
|
|
49 | (8) |
|
2.3.1 The Banach fixed point argument |
|
|
49 | (2) |
|
2.3.2 The Schauder fixed point argument |
|
|
51 | (3) |
|
2.3.3 A convergence result |
|
|
54 | (3) |
|
3 History-dependent variational inequalities |
|
|
57 | (24) |
|
3.1 Nonlinear equations with history-dependent operators |
|
|
57 | (10) |
|
3.1.1 Spaces of vector-valued functions |
|
|
58 | (3) |
|
|
61 | (4) |
|
|
65 | (2) |
|
3.2 History-dependent quasivariational inequalities |
|
|
67 | (8) |
|
3.2.1 A basic existence and uniqueness result |
|
|
67 | (6) |
|
3.2.2 A convergence result |
|
|
73 | (2) |
|
3.3 Evolutionary variational inequalities |
|
|
75 | (8) |
|
3.3.1 Existence and uniqueness |
|
|
75 | (3) |
|
3.3.2 Convergence results |
|
|
78 | (3) |
II Modelling and analysis of contact problems |
|
81 | (170) |
|
4 Modelling of contact problems |
|
|
83 | (40) |
|
4.1 Function spaces in contact mechanics |
|
|
84 | (7) |
|
|
84 | (1) |
|
4.1.2 Spaces for the displacement field |
|
|
85 | (3) |
|
4.1.3 Spaces for the stress field |
|
|
88 | (1) |
|
4.1.4 Spaces for piezoelectric contact problems |
|
|
89 | (2) |
|
4.2 Physical setting and constitutive laws |
|
|
91 | (12) |
|
|
91 | (1) |
|
4.2.2 Elastic constitutive laws |
|
|
92 | (3) |
|
4.2.3 Viscoelastic constitutive laws |
|
|
95 | (3) |
|
4.2.4 Viscoplastic constitutive laws |
|
|
98 | (2) |
|
4.2.5 The von Mises convex |
|
|
100 | (3) |
|
4.3 Modelling of elastic contact problems |
|
|
103 | (8) |
|
|
104 | (1) |
|
|
104 | (3) |
|
|
107 | (4) |
|
4.4 Modelling of elastic-viscoplastic contact problems |
|
|
111 | (3) |
|
|
111 | (1) |
|
4.4.2 Contact conditions and friction laws |
|
|
112 | (2) |
|
4.5 Modelling of piezoelectric contact problems |
|
|
114 | (9) |
|
4.5.1 Physical setting and preliminaries |
|
|
114 | (3) |
|
|
117 | (2) |
|
|
119 | (4) |
|
5 Analysis of elastic contact problems |
|
|
123 | (50) |
|
5.1 The Signorini contact problem |
|
|
123 | (20) |
|
|
123 | (3) |
|
5.1.2 Existence and uniqueness |
|
|
126 | (2) |
|
|
128 | (3) |
|
5.1.4 Dual variational formulation |
|
|
131 | (6) |
|
|
137 | (2) |
|
5.1.6 One-dimensional example |
|
|
139 | (4) |
|
5.2 Frictional contact problems |
|
|
143 | (19) |
|
5.2.1 Statement of the problems |
|
|
144 | (3) |
|
5.2.2 Existence and uniqueness |
|
|
147 | (1) |
|
5.2.3 A convergence result |
|
|
148 | (1) |
|
|
149 | (6) |
|
5.2.5 Dual variational formulation |
|
|
155 | (5) |
|
|
160 | (2) |
|
5.3 A frictional contact problem with normal compliance |
|
|
162 | (11) |
|
|
162 | (2) |
|
5.3.2 The Banach fixed point argument |
|
|
164 | (2) |
|
5.3.3 The Schauder fixed point argument |
|
|
166 | (1) |
|
5.3.4 Convergence results |
|
|
167 | (6) |
|
6 Analysis of elastic-visco plastic contact problems |
|
|
173 | (44) |
|
6.1 Bilateral frictionless contact problems |
|
|
173 | (5) |
|
6.1.1 Contact of materials with short memory |
|
|
174 | (2) |
|
6.1.2 Contact of materials with long memory |
|
|
176 | (2) |
|
6.2 Viscoelastic contact problems with long memory |
|
|
178 | (7) |
|
6.2.1 Frictionless contact with unilateral constraint |
|
|
178 | (3) |
|
6.2.2 Frictional contact with normal compliance |
|
|
181 | (2) |
|
6.2.3 A convergence result |
|
|
183 | (2) |
|
6.3 Viscoelastic contact problems with short memory |
|
|
185 | (15) |
|
6.3.1 Contact with normal compliance |
|
|
186 | (3) |
|
6.3.2 Contact with normal damped response |
|
|
189 | (3) |
|
6.3.3 Other frictional contact problems |
|
|
192 | (4) |
|
6.3.4 Convergence results |
|
|
196 | (4) |
|
6.4 Viscoplastic frictionless contact problems |
|
|
200 | (17) |
|
6.4.1 Contact with normal compliance |
|
|
200 | (5) |
|
6.4.2 Contact with unilateral constraint |
|
|
205 | (3) |
|
6.4.3 A convergence result |
|
|
208 | (9) |
|
7 Analysis of piezoelectric contact problems |
|
|
217 | (34) |
|
7.1 An electro-elastic frictional contact problem |
|
|
217 | (10) |
|
|
218 | (2) |
|
7.1.2 Existence and uniqueness |
|
|
220 | (3) |
|
7.1.3 Dual variational formulation |
|
|
223 | (4) |
|
7.2 An electro-viscoelastic frictional contact problem |
|
|
227 | (10) |
|
|
227 | (4) |
|
7.2.2 Existence and uniqueness |
|
|
231 | (6) |
|
7.3 An electro-viscoplastic frictionless contact problem |
|
|
237 | (14) |
|
|
237 | (4) |
|
7.3.2 Existence and uniqueness |
|
|
241 | (10) |
Bibliographical notes |
|
251 | (6) |
List of symbols |
|
257 | (5) |
References |
|
262 | (13) |
Index |
|
275 | |