Atnaujinkite slapukų nuostatas

El. knyga: Mathematical Models in Contact Mechanics

(Université de Perpignan, France), (Universitatea din Craiova, Romania)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Contact processes between deformable bodies abound in industry and everyday life and, for this reason, considerable efforts have been made in their modelling and analysis. Owing to their inherent complexity, contact phenomena lead to new and interestingmathematical models. Here and everywhere in this book by a mathematical model we mean a system of partial differential equations, associated with boundary conditions and initial conditions, eventually, which describes a specific contact process. The purpose of this book is to introduce the reader to some representative mathematical models which arise in Contact Mechanics. Our aim is twofold: first, to present a sound and rigorous description of the way in which the mathematical models are constructed; second, to present the mathematical analysis of such models which includes the variational formulation, existence, uniqueness and convergence results. To this end, we use results on various classes of variational inequalities in Hilbert spaces, that we present in an abstract functional framework. Also, we use various functional methods, including monotonicity, compactness, penalization, regularization and duality methods. Moreover, we pay particular attention to the mechanical interpretation of our results and, in this way, we illustrate the cross fertilization between modelling and applications on the one hand, and nonlinear analysis on the other hand"--

"This text provides a complete introduction to the theory of variational inequalities with emphasis on contact mechanics. It covers existence, uniqueness and convergence results for variational inequalities, including the modelling and variational analysis of specific frictional contact problems with elastic, viscoelastic and viscoplastic materials. New models of contact are presented, including contact of piezoelectric materials. Particular attention is paid to the study of history-dependent quasivariational inequalities and to their applications in the study of contact problems with unilateral constraints. The book fully illustrates the cross-fertilisation between modelling and applications on the one hand and nonlinear mathematical analysis on the other. Indeed, the reader will gain an understanding of how new and nonstandard models in contact mechanics lead to new types of variational inequalities and, conversely, how abstract results concerning variational inequalities can be applied to prove the unique solvability of the corresponding contact problems"--

Daugiau informacijos

A complete introduction to the modelling and mathematical analysis of contact processes with deformable solids.
Preface xi
I Introduction to variational inequalities 1(80)
1 Preliminaries on functional analysis
3(30)
1.1 Normed spaces
3(8)
1.1.1 Basic definitions
3(3)
1.1.2 Linear continuous operators
6(2)
1.1.3 Fixed point theorems
8(3)
1.2 Hilbert spaces
11(8)
1.2.1 Projection operators
11(4)
1.2.2 Orthogonality
15(2)
1.2.3 Duality and weak convergence
17(2)
1.3 Elements of nonlinear analysis
19(14)
1.3.1 Monotone operators
19(5)
1.3.2 Convex lower semicontinuous functions
24(5)
1.3.3 Minimization problems
29(4)
2 Elliptic variational inequalities
33(24)
2.1 Variational inequalities of the first kind
33(7)
2.1.1 Existence and uniqueness
34(1)
2.1.2 Penalization
35(5)
2.2 Variational inequalities of the second kind
40(9)
2.2.1 Existence and uniqueness
40(2)
2.2.2 A convergence result
42(1)
2.2.3 Regularization
43(6)
2.3 Quasivariational inequalities
49(8)
2.3.1 The Banach fixed point argument
49(2)
2.3.2 The Schauder fixed point argument
51(3)
2.3.3 A convergence result
54(3)
3 History-dependent variational inequalities
57(24)
3.1 Nonlinear equations with history-dependent operators
57(10)
3.1.1 Spaces of vector-valued functions
58(3)
3.1.2 Two examples
61(4)
3.1.3 The general case
65(2)
3.2 History-dependent quasivariational inequalities
67(8)
3.2.1 A basic existence and uniqueness result
67(6)
3.2.2 A convergence result
73(2)
3.3 Evolutionary variational inequalities
75(8)
3.3.1 Existence and uniqueness
75(3)
3.3.2 Convergence results
78(3)
II Modelling and analysis of contact problems 81(170)
4 Modelling of contact problems
83(40)
4.1 Function spaces in contact mechanics
84(7)
4.1.1 Preliminaries
84(1)
4.1.2 Spaces for the displacement field
85(3)
4.1.3 Spaces for the stress field
88(1)
4.1.4 Spaces for piezoelectric contact problems
89(2)
4.2 Physical setting and constitutive laws
91(12)
4.2.1 Physical setting
91(1)
4.2.2 Elastic constitutive laws
92(3)
4.2.3 Viscoelastic constitutive laws
95(3)
4.2.4 Viscoplastic constitutive laws
98(2)
4.2.5 The von Mises convex
100(3)
4.3 Modelling of elastic contact problems
103(8)
4.3.1 Preliminaries
104(1)
4.3.2 Contact conditions
104(3)
4.3.3 Friction laws
107(4)
4.4 Modelling of elastic-viscoplastic contact problems
111(3)
4.4.1 Preliminaries
111(1)
4.4.2 Contact conditions and friction laws
112(2)
4.5 Modelling of piezoelectric contact problems
114(9)
4.5.1 Physical setting and preliminaries
114(3)
4.5.2 Constitutive laws
117(2)
4.5.3 Contact conditions
119(4)
5 Analysis of elastic contact problems
123(50)
5.1 The Signorini contact problem
123(20)
5.1.1 Problem statement
123(3)
5.1.2 Existence and uniqueness
126(2)
5.1.3 Penalization
128(3)
5.1.4 Dual variational formulation
131(6)
5.1.5 Minimization
137(2)
5.1.6 One-dimensional example
139(4)
5.2 Frictional contact problems
143(19)
5.2.1 Statement of the problems
144(3)
5.2.2 Existence and uniqueness
147(1)
5.2.3 A convergence result
148(1)
5.2.4 Regularization
149(6)
5.2.5 Dual variational formulation
155(5)
5.2.6 Minimization
160(2)
5.3 A frictional contact problem with normal compliance
162(11)
5.3.1 Problem statement
162(2)
5.3.2 The Banach fixed point argument
164(2)
5.3.3 The Schauder fixed point argument
166(1)
5.3.4 Convergence results
167(6)
6 Analysis of elastic-visco plastic contact problems
173(44)
6.1 Bilateral frictionless contact problems
173(5)
6.1.1 Contact of materials with short memory
174(2)
6.1.2 Contact of materials with long memory
176(2)
6.2 Viscoelastic contact problems with long memory
178(7)
6.2.1 Frictionless contact with unilateral constraint
178(3)
6.2.2 Frictional contact with normal compliance
181(2)
6.2.3 A convergence result
183(2)
6.3 Viscoelastic contact problems with short memory
185(15)
6.3.1 Contact with normal compliance
186(3)
6.3.2 Contact with normal damped response
189(3)
6.3.3 Other frictional contact problems
192(4)
6.3.4 Convergence results
196(4)
6.4 Viscoplastic frictionless contact problems
200(17)
6.4.1 Contact with normal compliance
200(5)
6.4.2 Contact with unilateral constraint
205(3)
6.4.3 A convergence result
208(9)
7 Analysis of piezoelectric contact problems
217(34)
7.1 An electro-elastic frictional contact problem
217(10)
7.1.1 Problem statement
218(2)
7.1.2 Existence and uniqueness
220(3)
7.1.3 Dual variational formulation
223(4)
7.2 An electro-viscoelastic frictional contact problem
227(10)
7.2.1 Problem statement
227(4)
7.2.2 Existence and uniqueness
231(6)
7.3 An electro-viscoplastic frictionless contact problem
237(14)
7.3.1 Problem statement
237(4)
7.3.2 Existence and uniqueness
241(10)
Bibliographical notes 251(6)
List of symbols 257(5)
References 262(13)
Index 275
Mircia Sofonea is Full Professor of Applied Mathematics at the University of Perpignan (France), Director of the Laboratory of Mathematics and Physics (LAMPS) at the same university and Member of Honour of the Institute of Mathematics of the Romanian Academy of Sciences. Andaluzia Matei is Professor of Mathematics at the University of Craiova (Romania).