Atnaujinkite slapukų nuostatas

Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery [Kietas viršelis]

(Simon Fraser University, Burnaby, British Columbia, Canada)
  • Formatas: Hardback, 528 pages, aukštis x plotis: 229x152 mm, weight: 1140 g, 4 Illustrations, color; 325 Illustrations, black and white
  • Serija: Chromatographic Science Series
  • Išleidimo metai: 01-Nov-2005
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1574445723
  • ISBN-13: 9781574445725
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 528 pages, aukštis x plotis: 229x152 mm, weight: 1140 g, 4 Illustrations, color; 325 Illustrations, black and white
  • Serija: Chromatographic Science Series
  • Išleidimo metai: 01-Nov-2005
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1574445723
  • ISBN-13: 9781574445725
Kitos knygos pagal šią temą:
The microfluidic lab-on-a-chip allows scientists to conduct chemical and biochemical analysis in a miniaturized format so small that properties and effects are successfully enhanced, and processes seamlessly integrated. This microscale advantage translates into greater sensitivity, more accurate results, and better information.

Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery focuses on all aspects of the microfluidic lab-on-a-chip technologies and offers an overview of the available technology, its limitations, and its breakthroughs over the years. It emphasizes analytical applications of microfluidic technology and offers in-depth coverage of micromachining methods, microfluidic operations, chemical separations, sample preparation and injection methods, detection technology, and various chemical and biological analyses. Other topics of interest include the use of polymeric chips, fluid flow valve and control, single-cell analysis, DNA and RNA amplification techniques, DNA hybridization, immunoassays and enzymatic assays.

Originally conceived as a single chapter published in Ewing's Analytical Instrumentation, this book is a gateway to the vast literature and conference proceedings on the topic. Microfluidic Lab-on-a-Chip for Chemical and Biological Analysis and Discovery expands upon its roots to present a comprehensive treatment of microfluidic lab-on-a-chip methods and applications for novices and advanced researchers alike.

Recenzijos

"truly an awesome bookThis well-documented book with a multitude of references: 1/178 references are integrated throughout the bookwell-written and compares well to other science books of its kinda great book to learn about instrument design, with numerous pictures and illustrations making the text much easier to understand. Good pictures are something that is lacking in all too many science books." -Gary S. Vardon, Salt Lake Tribune, in Journal of Materials

"In fact I can say that it is an excellent book, well thought out and written."

P. Myers, in Chromatographia, June 2007, Vol. 65

Chapter 1 Introduction
Chapter 2 Micromachining Methods 3(52)
2.1 Micromachining of Silicon
3(4)
2.1.1 Etching of Si Microchannels
3(3)
2.1.2 Bonding of Si Chips
6(1)
2.2 Micromachining of Glass
7(11)
2.2.1 Etching of Glass Microchannels
8(6)
2.2.2 Drilling of Glass for Access-Hole Formation
14(2)
2.2.3 Glass Bonding
16(2)
2.3 Micromachining of Fused Quartz (or Fused Silica)
18(2)
2.3.1 Fused Quartz Channel Etching and Hole-Drilling
18(1)
2.3.2 Bonding of Fused Quartz Chips
18(2)
2.4 Micromachining of Polymeric Chips
20(26)
2.4.1 Casting
20(9)
2.4.2 Injection Molding
29(1)
2.4.3 Ablation
30(3)
2.4.4 Wire Imprinting
33(1)
2.4.5 Compression Molding
34(3)
2.4.6 Photopolymerization
37(1)
2.4.7 Other Plastic Micromachining Processes
38(2)
2.4.8 Problems Encountered in Polymeric Chips
40(15)
2.4.8.1 Optical Properties
40(2)
2.4.8.2 Electrical Properties
42(1)
2.4.8.3 Thermal Properties
42(1)
2.4.8.4 Mechanical Properties
42(1)
2.5.8.5 Surface Properties
43(2)
2.4.8.6 Solvent-Resistant Properties
45(1)
2.5 Metal Patterning
46(3)
2.6 World-to-Chip Interface
49(6)
Chapter 3 Microfluidic Flow 55(48)
3.1 Liquid Pumping Methods
55(13)
3.1.1 Electroosmotic Flow (EOF)
55(1)
3.1.2 Pressure-Driven Flow
56(1)
3.1.3 Centrifugal Pumping
57(2)
3.1.4 Alternative Pumping Principles
59(8)
3.1.4.1 EOF-Induced Flow
59(1)
3.1.4.2 Electrochemical Bubble Generation
59(4)
3.1.4.3 Thermally Induced Pumping
63(2)
3.1.4.4 Surface Energy
65(1)
3.1.4.5 Pneumatic Control
65(1)
3.1.4.6 Magnetohydrodynamic (MHD) Pumping
65(1)
3.1.4.7 Evaporation
66(1)
3.1.4.8 Miscellaneous Pumping Methods
66(1)
3.1.5 Microfluidic Flow Modeling Study
67(1)
3.2 Microfluidic Flow Control
68(35)
3.2.1 Surface Modifications for Flow Control
68(4)
3.2.2 Laminar Flow for Liquid Extraction and Microfabrication
72(4)
3.2.3 Generation of Concentration and Temperature Gradients
76(3)
3.2.4 Flow Switching
79(11)
3.2.5 Fluid Mixing
90(9)
3.2.5.1 Diffusive Mixing
91(1)
3.2.5.2 Chaotic Advection
91(4)
3.2.5.3 Oscillating Flow
95(1)
3.2.5.4 Acoustic Mixing
96(2)
3.2.5.5 Other Mixing Methods
98(1)
3.2.6 Liquid Dispensing
99(4)
Chapter 4 Sample Introduction 103(20)
4.1 Electrokinetic Injection
103(14)
4.1.1 Pinched Injection
107(8)
4.1.2 Gated Injection
115(2)
4.2 Hydrodynamic Injection
117(4)
4.3 Other Sample Injection Methods
121(2)
Chapter 5 Sample Pre-Concentration 123(18)
5.1 Sample Stacking
123(2)
5.2 Extraction
125(4)
5.3 Porous Membrane
129(8)
5.4 Other Pre-Concentration Methods
137(4)
Chapter 6 Separation 141(46)
6.1 Gas Chromatography (GC)
141(2)
6.2 Capillary Electrophoresis (CE) 1
143(32)
6.2.1 Free-Solution Capillary Electrophoresis (FSCE)
143(8)
6.2.2 Capillary Gel Electrophoresis (CGE)
151(4)
6.2.3 Micellar Electrokinetic Capillary Chromatography (MEKC)
155(3)
6.2.4 Isotachophoresis (ITP)
158(2)
6.2.5 Capillary Electrochromatography (CEC)
160(6)
6.2.6 Synchronized Cyclic Capillary Electrophoresis (SCCE)
166(4)
6.2.7 Free-Flow Electrophoresis (FFE)
170(1)
6.2.8 Derivatizations for CE for Separations
171(5)
6.2.8.1 Pre-Column Derivatization
171(3)
6.2.8.2 Post-Column Derivatization
174(1)
6.3 Chromatographic Separations
175(1)
6.4 Coupled Separations
176(11)
6.4.1 Fraction Collection
176(3)
6.4.2 Two-Dimensional Separations
179(8)
Chapter 7 Detection Methods 187(64)
7.1 Optical Detection Methods
187(24)
7.1.1 Fluorescence Detection
187(8)
7.1.1.1 Single-Channel Fluorescence Detection
187(3)
7.1.1.2 Scanning Detector
190(1)
7.1.1.3 Background Reduction
191(1)
7.1.1.4 Photobleaching Effect
192(1)
7.1.1.5 Integrated Fluorescent Detector
193(2)
7.1.2 Indirect Fluorescent Detection
195(1)
7.1.3 Multiple-Point Fluorescent Detection
196(4)
7.1.4 Absorbance Detection
200(2)
7.1.5 Plasma Emission Detection
202(3)
7.1.6 Chemiluminescence (CL) Detector
205(3)
7.1.7 Refractive Index (RI)
208(1)
7.1.8 Thermal Lens Microscope (TLM)
209(1)
7.1.9 Raman Scattering
210(1)
7.1.10 Surface-Plasmon Resonance
211(1)
7.1.11 Infrared Detection
211(1)
7.2 Electrochemical (EC) Detection
211(13)
7.2.1 Amperometric Detection
212(6)
7.2.2 Voltammetric Detection
218(2)
7.2.3 Potentiometric Detection
220(1)
7.2.4 Conductivity Detection
220(4)
7.3 Mass Spectrometry (MS)
224(14)
7.3.1 Electrospray Ionization (ESI)
224(11)
7.3.2 Matrix-Assisted Laser Desorption Ionization (MALDI)
235(3)
7.4 Other Detection Methods
238(13)
7.4.1 Thermal Detection
238(8)
7.4.2 Acoustic Wave Detection
246(1)
7.4.3 Nuclear Magnetic Resonance (NMR)
247(4)
Chapter 8 Applications to Cellular/Particle Analysis 251(42)
8.1 Retention of Cells and Particles
251(29)
8.1.1 Slit-Type Filters
251(4)
8.1.2 Weir-Type Filters
255(8)
8.1.3 Cell Adhesion
263(4)
8.1.4 Polymer Entrapment
267(2)
8.1.5 Three-Dimensional Flow Control
269(4)
8.1.6 Optical Trapping of Cells
273(4)
8.1.7 Dielectrophoresis (DEP)
277(3)
8.2 Studies of Cells in a Flow
280(8)
8.3 Other Cell Operations
288(5)
8.3.1 Cell Culture
288(2)
8.3.2 Electroporation
290(2)
8.3.3 Chip Cleaning and Sterilization
292(1)
8.3.4 Prevention of Cell Adhesion
292(1)
Chapter 9 Applications to Nucleic Acids Analysis 293(44)
9.1 Nucleic Acids Extraction and Purification
293(1)
9.2 Nucleic Acids Amplification
294(19)
9.2.1 DNA Amplification
294(17)
9.2.1.1 Polymerase Chain Reaction (PCR)
294(7)
9.2.1.2 Surface Passivation of PCR Chambers
301(1)
9.2.1.3 Integrated DNA Analysis Microsystems
301(5)
9.2.1.4 Real-Time PCR
306(3)
9.2.1.5 Flow-Through PCR
309(1)
9.2.1.6 Other DNA Amplification Techniques
310(1)
9.2.2 RNA Amplification
311(2)
9.3 DNA Hybridization
313(4)
9.3.1 Microchannel DNA Hybridization
313(4)
9.3.2 Microarray DNA Hybridization
317(1)
9.4 Other Nucleic Acid Applications
317(20)
9.4.1 DNA Sequencing
317(3)
9.4.2 Genetic Analysis
320(5)
9.4.3 Separation of Large DNA Molecules
325(12)
Chapter 10 Applications to Protein Analysis 337(28)
10.1 Immunoassay
337(12)
10.1.1 Homogeneous Immunoassay
337(6)
10.1.2 Heterogeneous Immunoassay
343(6)
10.2 Protein Separation
349(4)
10.3 Enzymatic Assays
353(40)
10.3.1 Assay of the Enzymes
353(5)
10.3.2 Assay of Analytes after Enzymatic Reactions
358(7)
Appendix 365(28)
Problem Sets 393(10)
1 Introduction
393(1)
2 Micromachining
393(2)
3 Microfluidic Flow
395(1)
4 Sample Introduction
396(1)
5 Sample Pre-concentration
396(1)
6 Separation
397(1)
7 Detection
397(3)
8 Cellular Analysis
400(1)
9 Nucleic Acid Analysis
400(1)
10 Protein Analysis
401(2)
References 403(74)
Glossary 477(10)
Index 487


Paul C.H. Li