Atnaujinkite slapukų nuostatas

El. knyga: Muon Spectroscopy: An Introduction

Edited by (STFC Fellow, ISIS Neutron and Muon Source), Edited by (Professor of Physics, University of Oxford), Edited by (Professor of Physics, University of Parma), Edited by (Professor of Physics, Durham University)
  • Formatas: 432 pages
  • Išleidimo metai: 14-Jul-2022
  • Leidėjas: Oxford University Press
  • Kalba: eng
  • ISBN-13: 9780192602930
  • Formatas: 432 pages
  • Išleidimo metai: 14-Jul-2022
  • Leidėjas: Oxford University Press
  • Kalba: eng
  • ISBN-13: 9780192602930

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Muons, radioactive particles produced in accelerators, have emerged as an important tool to study problems in condensed matter physics and chemistry. Beams of muons with all their spins polarized can be used to investigate a variety of static and dynamic effects and hence to deduce properties
concerning magnetism, superconductivity, molecular or chemical dynamics and a large number of other phenomena. The technique was originally the preserve of a few specialists located in particle physics laboratories. Today it is used by scientists from a very wide range of scientific backgrounds and
interests.

This modern, pedagogic introduction to muon spectroscopy is written with the beginner in the field in mind, but also aims to serve as a reference for more experienced researchers. The key principles are illustrated by numerous practical examples of the application of the technique to different areas
of science and there are many worked examples and problems provided to test understanding. The book vividly demonstrates the power of the technique to extract important information in many different scientific contexts, all stemming, ultimately, from the exquisite magnetic sensitivity of the
implanted muon spin.

Recenzijos

Fundamental particles such as electrons and protons have been used since their discovery for uncovering the structures of materials and for diagnostics and treatment in medicine. Instruments called spectroscopes exploit the waves associated with energetic particles to glean information, much as X-rays were used to decipher the structure of DNA. In this text, authors introduce another fundamental particle called the muon and discuss its usage in spectroscopic analysis [ ...] covering properties of the muon, its interactive behaviors with surrounding materials, the history and physics of muon spectroscopy, and production of muons for experimentation. Each chapter includes solved and still-to-be-solved examples along with some model answers. Good illustrations and graphs support the description of this fascinating new method of delving more deeply into the structure of matter. * Nanjundiah Sadanand, Central Connecticut State University * Such an introductory text is completely lacking at the moment, and I think that this team is the ideal choice for bringing an edited volume together. * Nicola Spaldin (Materials Theory, ETH Zurich) *

1 The basics of μSR
1(8)
1.1 The key idea
1(1)
1.2 The principles of the experiment
2(2)
1.3 Muon beams and spectrometers
4(2)
1.4 Experimental geometries
6(1)
1.5 What can we do with μSR?
6(3)
I Elements of muon spectroscopy
9(60)
2 Introduction
10(11)
2.1 Discovery of the muon
10(1)
2.2 The first muon application
11(1)
2.3 Muon perspectives
12(5)
2.4 The μSR experiment
17(3)
Exercises
20(1)
3 Muon charge and spin states
21(8)
3.1 State formation
22(2)
3.2 Hydrogen analogues
24(2)
3.3 Measuring the states
26(1)
3.4 Influencing the states
27(1)
Exercises
28(1)
4 The quantum muon
29(25)
4.1 Larmor precession
29(4)
4.2 Density matrices
33(1)
4.3 Mixed states
34(2)
4.4 Two spins: muonium
36(8)
4.5 Multiple spins
44(8)
Exercises
52(2)
5 Polarization functions
54(15)
5.1 Static fields
55(5)
5.2 Dynamical fields
60(4)
5.3 Disordered systems
64(1)
5.4 The stretched exponential
65(2)
Exercises
67(2)
II Science with μSR
69(130)
6 Magnetism
70(17)
6.1 The basics
70(2)
6.2 Static magnetic order
72(4)
6.3 The local magnetic field
76(5)
6.4 Static field distributions
81(5)
Exercises
86(1)
7 Dynamic effects in magnetism
87(23)
7.1 Correlation functions
87(3)
7.2 Dynamics in magnets
90(2)
7.3 Dynamics with muons
92(3)
7.4 Relaxation as resonance
95(1)
7.5 Dynamic magnetism
96(5)
7.6 Coupling tensors
101(2)
7.7 Dilute spins
103(5)
Exercises
108(2)
8 Measuring dynamic processes
110(20)
8.1 Critical dynamics
110(3)
8.2 Magnetism in metals
113(2)
8.3 BPP relaxation
115(2)
8.4 Mobile excitations
117(8)
8.5 Muon diffusion
125(4)
Exercises
129(1)
9 Superconductors
130(27)
9.1 The discovery
130(1)
9.2 London penetration depth
131(3)
9.3 Ginzburg-Landau model
134(2)
9.4 Type-II superconductors
136(4)
9.5 Measuring the penetration depth
140(4)
9.6 The microscopic model
144(2)
9.7 Example materials
146(4)
9.8 Clean versus dirty
150(1)
9.9 The Uemura plot
151(3)
9.10 Spontaneous fields
154(1)
Exercises
155(2)
10 Semiconductors and dielectrics
157(13)
10.1 Ubiquitous hydrogen impurities
159(1)
10.2 Muonium
160(1)
10.3 Silicon: the foundations
161(4)
10.4 Shallow donor states
165(1)
10.5 Related techniques
166(3)
Exercises
169(1)
11 Ionic motion
170(7)
11.1 Why use muons?
170(3)
11.2 Science examples
173(2)
11.3 Limitations
175(1)
Exercises
176(1)
12 Chemistry
177(22)
12.1 Chemical environments
177(3)
12.2 Muonium spectroscopy
180(3)
12.3 Reactions of muonium
183(3)
12.4 Muoniated radicals
186(5)
12.5 Structure and dynamics
191(7)
Exercises
198(1)
III Practicalities of muon spectroscopy
199(40)
13 Making muons
200(10)
13.1 Muon production
200(2)
13.2 Surface and decay muons
202(2)
13.3 Beamline components
204(5)
Exercises
209(1)
14 Instrumentation
210(7)
14.1 Spectrometer elements
210(3)
14.2 Pulsed sources
213(1)
14.3 Continuous sources
214(1)
14.4 Small samples
215(2)
15 Doing the experiment
217(1)
15.1 Experimental setup
217(3)
15.2 Calibrations
220(1)
15.3 Data characteristics
221(3)
15.4 Time domain analysis
224(6)
15.5 Frequency domain
230(8)
Exercises
238(1)
IV Further topics in muon spectroscopy
239(96)
16 Calculating muon sites
240(23)
16.1 The site problem
241(2)
16.2 What is DFT?
243(3)
16.3 Methods
246(2)
16.4 Basis sets
248(2)
16.5 Functionals
250(1)
16.6 Mixed methods
251(1)
16.7 Obtaining sites
252(5)
16.8 Quantum effects
257(1)
16.9 Sites via experiment
258(3)
Exercises
261(2)
17 Numerical modelling
263(11)
17.1 Beamline optimization
263(2)
17.2 Muon range profile
265(2)
17.3 Muon spin response
267(7)
18 Low energy μSR
274(9)
18.1 Generating slow muons
274(3)
18.2 LEM facilities
277(3)
18.3 Science examples
280(3)
19 Stimulation methods
283(22)
19.1 Types of stimulation
283(2)
19.2 Case studies
285(3)
19.3 Photoexcitation
288(5)
19.4 Muon-spin resonance
293(10)
Exercises
303(2)
20 High magnetic fields
305(8)
20.1 Why high fields?
305(2)
20.2 Muons and high magnetic fields
307(3)
20.3 Science at high field
310(2)
Exercises
312(1)
21 Muons under pressure
313(10)
21.1 Requirements
313(1)
21.2 The PSI setup
314(4)
21.3 A gas-pressure setup
318(2)
21.4 Science examples
320(1)
21.5 Outlook
321(2)
22 Negative muon techniques
323(12)
22.1 μ-SR spectroscopy
323(5)
22.2 Elemental analysis
328(6)
Exercises
334(1)
V Complementary techniques
335(22)
23 μSR versus other resonance and bulk techniques
336(14)
23.1 Magnetic resonance
336(4)
23.2 When the muon is a plus
340(2)
23.3 Mossbauer spectroscopy
342(2)
23.4 Bulk techniques
344(5)
Exercises
349(1)
24 X-rays, neutrons, and μSR
350(7)
24.1 X-rays
350(2)
24.2 Neutrons
352(1)
24.3 Where do muons fit in?
353(2)
Exercises
355(2)
A Fundamental constants
357(1)
B Nuclear moments
358(2)
C Negative muon lifetimes
360(1)
D Answers to selected problems
361(5)
E Muon particle physics
366(7)
E.1 Parity violation
366(1)
E.2 Standard Model and weak interactions
367(1)
E.3 Muon production
368(1)
E.4 Muon decay
369(4)
F Quantum-mechanical polarization functions
373(6)
F.1 Time-dependent perturbations
373(3)
F.2 Evaluating terms
376(3)
G The second moment of a spin distribution
379(8)
G.1 The dipolar interaction
379(1)
G.2 High transverse field
380(4)
G.3 Zero field
384(1)
G.4 Quadrupolar coupling
385(2)
H A short history of μSR
387(19)
Index 406
Stephen J. Blundell is a Professor of Physics at the University of Oxford and a Professorial Fellow of Mansfield College, Oxford. He leads a research group which uses muon spectroscopy to solve problems in magnetism and superconductivity and he has been developing ab initio techniques to understand the nature of the muon site.



Roberto De Renzi is Professor of Physics at the University of Parma. He started developing muon spin spectrometers at CERN in 1980 and later took part in the design of the ISIS Muon Facility. He currently leads a µSR and NMR group dedicated to the experimental investigation of magnetic and superconducting compounds, and to the application of ab-initio techniques to assist the measurement of condensed matter properties based on the experimental detection of hyperfine fields.



Tom Lancaster was a research fellow at the University of Oxford before taking up a lectureship at Durham University in 2012, where he is currently Professor of Physics. His research group's interests include using muons to investigate low-dimensional, topological, and molecular magnetism, and the nature of the muon stopping state.



Francis L. Pratt is a senior scientist and STFC Fellow based in the muon group at the ISIS Neutron and Muon Source. He has worked in muon spectroscopy for more than thirty years, using experimental facilities in the UK, Switzerland, and Japan. His research interests are focused on condensed matter physics using muons, with topics ranging from the study of quantum magnets and spin liquids to organic magnets and superconductors and the physics of molecular systems.