Atnaujinkite slapukų nuostatas

El. knyga: New Topologies and Modulation Schemes for Soft-Switching Isolated DC-DC Converters

  • Formatas: EPUB+DRM
  • Serija: CPSS Power Electronics Series
  • Išleidimo metai: 20-Sep-2019
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789813299344
  • Formatas: EPUB+DRM
  • Serija: CPSS Power Electronics Series
  • Išleidimo metai: 20-Sep-2019
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789813299344

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book presents a series of new topologies and modulation schemes for soft-switching in isolated DC–DC converters. Providing detailed analyses and design procedures for converters used in a broad range of applications, it offers a wealth of engineering insights for researchers and students in the field of power electronics, as well as stimulating new ideas for future research. 

1 Introduction
1(22)
1.1 Application of Isolated DC--DC Converters
1(3)
1.1.1 Server Power Supply
2(1)
1.1.2 Electrical Vehicle
2(1)
1.1.3 Solid-State Transformer
3(1)
1.2 Typical Topologies of Isolated DC--DC Converter
4(11)
1.2.1 Phase-Shift Controlled DC--DC Converter
4(4)
1.2.2 Isolated Resonant DC--DC Converter
8(1)
1.2.3 Voltage-Fed Bidirectional Isolated DC--DC Converter
9(3)
1.2.4 Current-Fed Bidirectional Isolated DC--DC Converter
12(3)
1.3 Trend of the DC--DC Converter
15(1)
1.4 Organization of the Book
15(8)
References
16(7)
2 Hybrid Phase-Shift-Controlled Three-Level and LLC DC--DC Converter with Active Connection at the Secondary Side
23(24)
2.1 Hybrid Three-Level and LLC DC--DC Converter
23(5)
2.2 Analysis of the HTL-LLC Converter
28(9)
2.2.1 DC Conversion Ratio
28(3)
2.2.2 Power Losses of the Active Switch
31(1)
2.2.3 ZVS Condition of Switches
31(1)
2.2.4 Filter Inductor and Current Ripple
32(1)
2.2.5 Current Stress of the Primary Semiconductors
33(3)
2.2.6 Voltage Stress of the Secondary Diodes
36(1)
2.3 Design Considerations
37(4)
2.3.1 Turns Ratio of the Two Transformers
37(1)
2.3.2 Magnetizing Inductance of the LLC Transformer
38(1)
2.3.3 Current Stress Comparison of the Primary Semiconductors
39(1)
2.3.4 Resonant Capacitance Cr
40(1)
2.3.5 Resonant Inductance Lr
41(1)
2.3.6 Selection of the Secondary Semiconductors
41(1)
2.4 Experimental Verifications
41(4)
2.5 Conclusion
45(2)
References
45(2)
3 Hybrid Three-Level and Half-Bridge DC--DC Converter with Reduced Circulating Loss and Output Filter Inductance
47(24)
3.1 Hybrid Three-Level Plus Half-Bridge DC--DC Converter
47(6)
3.2 Analysis of the HTL-HB Converter
53(7)
3.2.1 DC Conversion Ratio
53(1)
3.2.2 Voltage of the Blocking Capacitor
54(1)
3.2.3 ZVS Condition of Switches
55(1)
3.2.4 Current Stress of the Primary Semiconductors
56(3)
3.2.5 Voltage Stress of the Secondary Diodes and Switch
59(1)
3.3 Design Considerations
60(4)
3.3.1 Turns Ratio of the Two Transformers
60(1)
3.3.2 Filter Inductor and Current Ripple
60(1)
3.3.3 Magnetizing Inductance of the HB Transformer
61(1)
3.3.4 Current Stress Comparison of the Primary Semiconductors
62(1)
3.3.5 Blocking Capacitor Ch
63(1)
3.3.6 Selection of the Secondary Semiconductors
64(1)
3.4 Experimental Verifications
64(5)
3.5 Conclusion
69(2)
References
70(1)
4 Improved ZVS Three-Level DC--DC Converter with Reduced Circulating Loss
71(20)
4.1 Improved Two-Transformer Three-Level DC--DC Converter
71(6)
4.2 Analysis of the Converter
77(4)
4.2.1 DC Conversion Ratio
77(1)
4.2.2 ZVS Condition of Switches
78(1)
4.2.3 Current Stress of the Primary Semiconductors
79(2)
4.2.4 Voltage Stress of the Rectifier Diodes
81(1)
4.3 Design Considerations
81(4)
4.3.1 Turns Ratio of the Two Transformers
81(1)
4.3.2 Filter Inductor and Current Ripple
82(1)
4.3.3 Magnetizing Inductance of Tr2
83(1)
4.3.4 Current Stress Comparison of the Primary Switches
83(1)
4.3.5 Selection of the Rectifier Diodes
84(1)
4.3.6 Output Filter Capacitance
85(1)
4.4 Experimental Verifications
85(5)
4.5 Conclusion
90(1)
References
90(1)
5 Analysis and Evaluation of Dual Half-Bridge Cascaded Three-Level DC--DC Converter for Reducing Circulating Current Loss
91(24)
5.1 Improved Dual Half-Bridge Cascaded Three-Level DC--DC Converter
92(5)
5.2 Analysis and Design Consideration of the Converter
97(9)
5.2.1 ZVS Condition of Switches
97(1)
5.2.2 Comparison of the Gain of the Converter
98(2)
5.2.3 Comparison of the Filter Inductance
100(1)
5.2.4 Comparisons of Rms Current in the Primary Switches
101(4)
5.2.5 Ringing of the Rectifier Diodes
105(1)
5.3 Experimental Verifications
106(6)
5.4 Conclusion
112(3)
References
113(2)
6 Output-Series-Connected Dual Active Bridge Converters for Zero-Voltage Switching Throughout Full Load Range by Employing Auxiliary LC Networks
115(32)
6.1 Working Modes of the Presented DAB Converter
115(9)
6.2 Key Feature and Modulation Scheme of the Converter
124(11)
6.2.1 ZVS Analyses for Q1-Q4
124(1)
6.2.2 ZVS Analyses for Q5-Q12
124(4)
6.2.3 Modulation Trajectory
128(5)
6.2.4 Design of the Auxiliary Inductor Ls
133(1)
6.2.5 Switch Conduction Loss Comparison
134(1)
6.3 Experimental Verifications
135(10)
6.4 Conclusion
145(2)
References
145(2)
7 Dual Active Bridge Converter with Parallel-Connected Full Bridges in Low-Voltage Side for ZVS by Using Auxiliary Coupling Inductor
147(22)
7.1 Parallel-Connected DAB in Low-Voltage Side
147(5)
7.2 Key Features and Modulation of the Converter
152(8)
7.2.1 ZVS Analyses for Q9-Q12
152(1)
7.2.2 ZVS Analyses for Q1-Q8
152(3)
7.2.3 Design of the Auxiliary Inductance Ls
155(2)
7.2.4 Control Loop of the Modulation Trajectory
157(1)
7.2.5 Conduction Loss Analyses
158(2)
7.3 Experimental Validation
160(7)
7.4 Conclusion
167(2)
References
167(2)
8 An Isolated Micro-converter Utilizing Fixed-Frequency BCM Control Method for PV Applications
169(24)
8.1 BCM Operation Analysis
169(12)
8.1.1 Topology Description
169(1)
8.1.2 BCM Modes Analysis
170(4)
8.1.3 BCM Operation Condition
174(3)
8.1.4 ZVS Condition Analysis
177(2)
8.1.5 Light Load Optimization
179(2)
8.2 Loss Analysis
181(3)
8.3 Control and MPPT Implementation
184(3)
8.4 Experimental Results
187(3)
8.5 Conclusion
190(3)
References
191(2)
9 Modulation Scheme of Dual Active Bridge Converter for Seamless Transitions in Multi-working Modes Compromising ZVS and Conduction Loss
193(22)
9.1 Analyses of the Working Modes for DAB Converter
193(7)
9.2 Modulation Scheme for Seamless Transition and Performance Analyses
200(7)
9.2.1 Modulation Scheme When M < 1
200(1)
9.2.2 Modulation Scheme When M > 1
201(2)
9.2.3 Unified Modulation Scheme
203(1)
9.2.4 Switch Conduction Loss Comparison
204(1)
9.2.5 Peak Current Comparison
205(2)
9.3 Experimental Validation
207(5)
9.4 Conclusion
212(3)
References
213(2)
10 An Improved Modulation Scheme of Current-fed Bidirectional DC--DC Converters for Loss Reduction
215
10.1 Operation Modes of the Current-fed Bidirectional DC--DC Converter
215(14)
10.1.1 Review of the Modulations for the Current-fed Bidirectional DC--DC Converter
215(2)
10.1.2 Analyses of the Key Operation Modes
217(9)
10.1.3 ZVS Conditions for the Modified Operation Mode
226(3)
10.2 Modulation and Control Scheme for the Modified Operation Mode
229(8)
10.2.1 Modified PWM Plus Phase-Shift (MPPS) Modulation Scheme and Control Diagram
229(3)
10.2.2 Switch Conduction Loss Comparison
232(4)
10.2.3 Comparison of the Core Loss in the Series Inductor
236(1)
10.3 Experimental Verifications
237(5)
10.4 Conclusion
242
References
243
Zhiqiang Guo received his B.S. in Automation from the Hebei University of Technology, Tianjin, China, in 2008, and his M.S. and Ph.D. in electrical engineering from the Beijing Institute of Technology, Beijing, China, in 2010 and 2015. He was a Postdoctoral Research Fellow with the Department of Electrical Engineering, Tsinghua University, Beijing, China, from 2015 to 2017. Since 2017, He joined the faculty of School of Automation, Beijing Institute of Technology, Beijing, China, where he is an Assistant Professor. He is author or co-author of more than 30 technical papers, of which more than 20 is international journals. His current research interests include DC-DC converters, distributed generation, and microgrid applications.

Deshang Sha is currently a Professor in the school of Automation, Beijing Institute of Technology. From 2012 to 2013, he was a Visiting Scholar with the Future Energy Electronics Center (FEEC), Virginia Polytechnic Institute and State University, USA.His research interests are in the areas of high frequency isolated and high efficiency power conversion, power electronics application in renewable energy and micro-grid. He has published over 60 papers in international journals, over 30 on international conferences, in which over 30 have been published on IEEE Transactions. He has earned 18 patents in the field of power electronics and has already published three books. In 2013, he was awarded the outstanding reviewer for the IEEE Transactions on Power Electronics.