Atnaujinkite slapukų nuostatas

Organic Optoelectronics [Kietas viršelis]

(Chinese Academy of Sciences, Beijing, PR China), , (University of California, Santa Barbara, CA, USA), (Chinese Academy of Sciences, Beijing, PR China), (Chinese Academy of Sciences, Beijing, PR China), (Chinese Academy of Sciences, Bei)
  • Formatas: Hardback, 526 pages, aukštis x plotis x storis: 248x178x31 mm, weight: 1243 g
  • Išleidimo metai: 10-Jan-2013
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527329684
  • ISBN-13: 9783527329687
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 526 pages, aukštis x plotis x storis: 248x178x31 mm, weight: 1243 g
  • Išleidimo metai: 10-Jan-2013
  • Leidėjas: Blackwell Verlag GmbH
  • ISBN-10: 3527329684
  • ISBN-13: 9783527329687
Kitos knygos pagal šią temą:
Chinese and European chemists describe the fundamental science and real applications of organic optoelectronics, focusing on the optoelectronic behavior of organic semiconductors and their applications in new optoelectronic devices. They cover electronic process in organic solids, organic/polymeric semiconductors for field-effect transistors, organic circuits and organic single-molecule transistors, organic photonic devices, organic solar cells based on small molecules, and organic thermoelectric power devices. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

Written by internationally recognized experts in the field with academic as well as industrial experience, this book concisely yet systematically covers all aspects of the topic.
The monograph focuses on the optoelectronic behavior of organic solids and their application in new optoelectronic devices. It covers organic electroluminescent materials and devices, organic photonics, materials and devices, as well as organic solids in photo absorption and energy conversion. Much emphasis is laid on the preparation of functional materials and the fabrication of devices, from materials synthesis and purification, to physicochemical properties and the basic processes and working principles of the devices.
The only book to cover fundamentals, applications, and the latest research results, this is a handy reference for both researchers and those new to the field.

Recenzijos

This text will be very helpful for anyone interested in optoelectronics.  (Optics & Photonics News, 1 October 2013)

Preface xv
List of Contributors
xvii
1 Electronic Process in Organic Solids
1(42)
Hongzhen Lin
Fenglian Bai
1.1 Introduction
1(2)
1.2 Structure Characteristics and Properties of Organic Solids
3(5)
1.2.1 Organic Solids
4(3)
1.2.2 Molecular Geometries
7(1)
1.2.3 Aggregations and Assemblies
7(1)
1.3 Electronic Processes in Organic Small Molecules
8(14)
1.3.1 Photophysics of Small Molecules
8(1)
1.3.1.1 Molecular Orbital Model
8(1)
1.3.1.2 Jablonski Diagram
9(1)
1.3.1.3 Frank-Condon Principle
10(1)
1.3.1.4 Electronic Absorption
11(2)
1.3.1.5 Fluorescence and Phosphorescence
13(2)
1.3.2 Excitation for Charge and Energy Transfer in Small Molecules
15(1)
1.3.2.1 Photoinduced Electron Transfer
15(3)
1.3.2.2 Excitation Energy Transfer
18(4)
1.4 Some Basic Concepts of Electronic Process in Conjugated Polymers
22(13)
1.4.1 Excited States in Conjugated Polymers
24(1)
1.4.1.1 Soliton
24(1)
1.4.1.1 Polaron
25(1)
1.4.1.3 Bipolaron
26(1)
1.4.1.4 Exciton
27(3)
1.4.2 Interactions between Conjugated Polymer Chains
30(1)
1.4.2.1 Bound Polaron Pairs
30(1)
1.4.2.2 Excimers
31(1)
1.4.2.3 Ground-State Complexes
32(1)
1.4.3 Photoinduced Charge Transfer between Conjugated Polymers and Electron Acceptors
32(3)
1.5 Carriers Generation and Transport
35(8)
1.5.1 Charge Carriers
35(1)
1.5.2 Carrier Mobility and Its Measurement
36(1)
1.5.3 Mobility-Influencing Factors
37(1)
References
38(5)
2 Organic/Polymeric Semiconductors for Field-Effect Transistors
43(52)
Qing Meng
Huanli Dong
Wenping Hu
2.1 Introduction
43(4)
2.1.1 Features of Organic/Polymeric Semiconductors
44(1)
2.1.2 Classification of Semiconductors for Organic Field-Effect Transistors
44(2)
2.1.3 Main Parameters for the Characterization of Organic/Polymeric Semiconductors
46(1)
2.2 Small-Molecular Semiconductors
47(24)
2.2.1 P-type Small-Molecular Semiconductors
47(1)
2.2.1.1 Polycyclic Aromatic Hydrocarbons
47(6)
2.2.1.2 Chalcogen-Containing Semiconductors
53(10)
2.2.1.3 Nitrogen-Containing Semiconductors
63(2)
2.2.2 n-Type Small-Molecule Semiconductors
65(1)
2.2.2.1 Fluorine-Containing Semiconductors
65(2)
2.2.2.2 Cyano-Containing Semiconductors
67(1)
2.2.2.3 Carbonyl and Imide Semiconductors
68(2)
2.2.2.4 Fullerenes
70(1)
2.3 Polymer Semiconductors
71(5)
2.3.1 p-Type Polymer Semiconductors
72(1)
2.3.1.1 Polythiophenes
72(1)
2.3.1.2 Thiophene-Heteroacene Copolymers
73(1)
2.3.1.3 Other Copolymers
74(1)
2.3.2 n-Type Polymer Semiconductors
75(1)
2.4 Normal Synthetic Methods for Organic Semiconductors
76(4)
2.4.1 Diels-Alder Cycloaddition
77(1)
2.4.2 Aldol Reaction
77(1)
2.4.3 Stille Reaction
78(1)
2.4.4 Suzuki Reaction
78(1)
2.4.5 Sonogashira Crosscoupling
79(1)
2.4.6 Ullmann Reaction
79(1)
2.4.7 Heck Reaction
79(1)
2.5 Purification of Organic Semiconductors
80(1)
2.6 Outlook
81(14)
References
81(14)
3 Organic/Polymeric Field-Effect Transistors
95(76)
Chengliang Wang
Lang Jiang
Wenping Hu
3.1 Introduction
95(6)
3.1.1 Configurations of Organic Field-Effect Transistors
96(1)
3.1.2 Working Principle of Organic Field-Effect Transistors
97(4)
3.2 Carriers Transport in Organic Field-Effect Transistors
101(8)
3.2.1 Molecular Arrangement in Organic Semiconductors
101(3)
3.2.2 Charge Transport Models in Organic Semiconductors
104(4)
3.2.3 Factors Influencing Charge Transport in the Conducting Channel of Organic Transistors
108(1)
3.3 Electrodes, Insulators, and Interfaces of Organic Field-Effect Transistors
109(12)
3.3.1 Electrodes
109(4)
3.3.2 Insulators
113(1)
3.3.2.1 Oxides
113(1)
3.3.2.2 Polymers
114(2)
3.3.2.3 Self-Assembled Layers
116(1)
3.3.2.4 Air Dielectric
116(1)
3.3.3 Interfaces
117(1)
3.3.3.1 Energy Level Alignment
117(2)
3.3.3.2 Interface Compatibility
119(2)
3.4 Organic/Polymeric Thin Film Field-Effect Transistors
121(19)
3.4.1 Techniques for Thin Film Preparation
121(1)
3.4.2 Effect of Thin-Film Microstructure on the Performance of Transistors
122(4)
3.4.3 High-Performance Transistors of Small Molecules
126(7)
3.4.4 High-Performance Transistors of Conjugated Polymers
133(2)
3.4.5 New Techniques for Organic/Polymeric Thin Film Field-Effect Transistors
135(1)
3.4.5.1 Self-Assembly
135(2)
3.4.5.2 Printing
137(3)
3.5 Organic/Polymeric Single Crystal Field-Effect Transistors
140(15)
3.5.1 Organic/Polymeric Single Crystals
140(1)
3.5.2 Growth of Organic/Polymeric Crystals
140(1)
3.5.2.1 Vapor Process for the Growth of Organic Crystals
140(2)
3.5.2.2 Solution Process for the Growth of Organic/Polymeric Crystals
142(2)
3.5.3 Fabrication Techniques for Organic Field-Effect Transistors of Single Crystals
144(1)
3.5.3.1 Electrostatic-Bonding Technique
144(1)
3.5.3.2 Drop-Casting Technique
144(2)
3.5.3.3 Deposition Parylene Dielectric Technique
146(1)
3.5.3.4 Shadow Mask Technique
147(1)
3.5.3.5 Gold Layer Glue Technique
148(1)
3.5.4 Performance of Organic/Polymeric Single Crystals in Field-Effect Transistors
148(1)
3.5.4.1 Organic/Polymeric Crystals
148(5)
3.5.4.2 Structure-Property Relationship of Organic/Polymeric Single Crystals
153(2)
3.6 Outlook
155(16)
References
156(15)
4 Organic Circuits and Organic Single-Molecule Transistors
171(106)
Qinqxin Tang
Yanhong Tong
Wenping Hu
4.1 Introduction
171(7)
4.1.1 Ambipolar Transistors
171(2)
4.1.2 Inverter Circuits
173(3)
4.1.3 Ring Oscillator Circuits
176(2)
4.2 Circuits of Organic Thin Films
178(32)
4.2.1 Circuits of Organic Thin Films Based on Ambipolar Transistors
178(6)
4.2.2 Circuits of Organic Thin Films Based on Unipolar Transistors
184(3)
4.2.3 Complementary Circuits of Organic Thin Films
187(5)
4.2.4 Complex Circuits of Organic Thin Films
192(7)
4.2.5 Performance Modulation of Organic Thin-Film Circuits
199(10)
4.2.6 Analog Circuit Based on Organic Thin-Film Transistors
209(1)
4.3 Self-Assembled and Printed Organic Circuits
210(6)
4.3.1 Self-Assembled Organic Circuits
210(3)
4.3.2 Printed Organic Circuits
213(3)
4.4 Circuits of Organic Crystals
216(5)
4.5 Single-Molecule Transistors
221(38)
4.5.1 Fabrication of Single-Molecule Transistors
222(1)
4.5.1.1 Fabrication of Single-Molecule Prototype Devices
222(3)
4.5.1.2 Fabrication of Single-Molecule Transistors by Nanogap Electrodes
225(19)
4.5.2 Behavior of Single-Molecule Transistors
244(1)
4.5.2.1 Temperature- and Length-Variable Transport of Single Molecules
245(2)
4.5.2.2 Inelastic Electron Tunneling Spectroscopy of Single Molecules
247(4)
4.5.2.3 Transition Voltage Spectroscopy of Single Molecules
251(2)
4.5.3 Quanta and Theories of Single-Molecule Transistors
253(6)
4.6 Challenges and Outlooks
259(18)
References
259(18)
5 Polymer Light-Emitting Diodes (PLEDs): Devices and Materials
277(60)
Xiong Gong
5.1 Introduction
277(1)
5.2 PLEDs Fabricated from Conjugated Polymers
278(1)
5.2.1 Device Architecture
278(1)
5.2.2 Device Fabrication
278(1)
5.3 Accurate Measurement of PLED Device Parameters
279(4)
5.3.1 Photopic Luminosity
279(2)
5.3.2 Measurement of PLEDs
281(2)
5.4 Devices Physics of PLEDs
283(13)
5.4.1 Elementary Microscopic Process of PLEDs
283(1)
5.4.1.1 Injection
283(1)
5.4.1.2 Carrier Transport
284(1)
5.4.1.3 Carrier Recombination
284(1)
5.4.1.4 Photon Emission
284(1)
5.4.1.5 Photon Extraction
285(1)
5.4.2 Carrier Transport in PLEDs
285(1)
5.4.3 Electronic Characteristic of PLEDs
286(1)
5.4.3.1 Current-Voltage Characteristics
286(1)
5.4.3.2 Space-Charge-Limited Currents
286(2)
5.4.3.3 Injection-Limited Currents
288(1)
5.4.3.4 Diffusion-Controlled Currents
288(1)
5.4.4 Fowler-Nordheim Tunneling in Conjugated Polymer MIM Diodes
289(3)
5.4.4.1 Single Carrier Devices
292(1)
5.4.4.2 LED Operating Voltage and Efficiency
293(1)
5.4.4.3 Limits of the Model
294(1)
5.4.5 Approaches to Improved Carrier Injection
295(1)
5.5 Materials for PLEDs
296(7)
5.5.1 Conjugated Polymers for PLEDs
296(1)
5.5.1.1 Poly(p-phenylenevinylene)s (PPVs)
297(1)
5.5.1.2 Polyphenylenes (PPPs)
297(1)
5.5.1.3 Polyfluorenes (PFs)
297(2)
5.5.1.4 Polythiophenes (PTs)
299(1)
5.5.2 Anode and Cathode
300(1)
5.5.2.1 Anodes
300(1)
5.5.2.2 Cathodes
301(1)
5.5.3 Hole-Injection/Transporting Materials
302(1)
5.5.3.1 Hole-Injection Materials
302(1)
5.5.3.2 Hole-Transporting Materials
302(1)
5.5.4 Electron-Transporting Materials
302(1)
5.6 Electrophosphorescent PLEDs
303(20)
5.6.1 Energy Transfer
303(3)
5.6.2 Electrophosphorescent PLEDs
306(3)
5.6.3 Nonconjugated Polymer-Based Electrophosphorescent PLEDs
309(7)
5.6.4 Conjugated Polymer-Based Electrophosphorescent PLEDs
316(7)
5.7 White-Light PLEDs
323(8)
5.7.1 Solid-State Lighting
323(1)
5.7.2 Characterization of White Light
324(1)
5.7.3 Fabrication of White-Light PLEDs
325(1)
5.7.4 Efficient Excitation Energy Transfer from PFO to the Fluorenone Defect
326(2)
5.7.5 White Electrophosphorescent PLEDs
328(2)
5.7.6 Outlook of White PLEDs
330(1)
5.8 Summary
331(6)
References
331(6)
6 Organic Solids for Photonics
337(14)
Hongbing Fu
6.1 Introduction
337(1)
6.2 Size Effects on the Optical Properties of Organic Solids
338(4)
6.2.1 Exciton Confinement Effect
338(1)
6.2.2 Size-Tunable Emission
339(2)
6.2.3 Multiple Emissions
341(1)
6.3 Aggregation-Induced Enhanced Emission
342(2)
6.4 Composite Solid
344(3)
6.5 Outlook
347(4)
References
348(3)
7 Organic Photonic Devices
351(24)
Hongbing Fu
7.1 Introduction
351(1)
7.2 Crystalline One-Dimensional (1-D) Organic Nanostructures
352(5)
7.2.1 Self-Assembly in Liquid Phase
352(1)
7.2.2 Template-Induced Self-Assembly in Liquid Phase
353(2)
7.2.3 Morphology Control with Molecular Design
355(1)
7.2.4 Physical Vapor Deposition (PVD)
355(2)
7.3 Organic Nanophotonics
357(14)
7.3.1 Electroluminescence and Field Emission
358(1)
7.3.2 Tunable Emission from Binary Organic Nanowires
358(4)
7.3.3 Organic 1-D Optical Waveguides
362(6)
7.3.4 Lasing from Organic Nanowires
368(1)
7.3.5 Organic Photonic Circuits
369(2)
7.4 Outlook
371(4)
References
373(2)
8 Organic Solar Cells Based on Small Molecules
375(32)
Yuze Lin
Xiaowei Zhan
8.1 Introduction
375(3)
8.1.1 Solar Energy and Solar Cells
375(1)
8.1.2 Materials Features for Solar Cells
376(1)
8.1.3 Device Configurations of Solar Cells
377(1)
8.1.3.1 Hamburger Structure
377(1)
8.1.3.2 Tandem Structure
378(1)
8.2 Small-Molecule Donors
378(13)
8.2.1 Dyes
379(5)
8.2.2 Oligothiophenes
384(3)
8.2.3 Triphenylamine Derivatives
387(4)
8.3 Small-Molecule Acceptors
391(4)
8.3.1 Rylene Diimides
391(2)
8.3.2 Other Nonfullerene Acceptors
393(2)
8.4 Donor-Acceptor Dyad Molecules for Single-Component OPVs
395(1)
8.5 Conclusions and Outlook
396(11)
References
397(10)
9 Polymer Solar Cells
407(30)
Huitao Bai
Qinqin Shi
Xiaowei Zhan
9.1 Introduction
407(1)
9.2 Polymer Donor Materials
408(15)
9.2.1 Polyphenylenevinylene (PPV) Derivatives
408(2)
9.2.2 Polythiophene Derivatives
410(3)
9.2.3 Polyfluorene Derivatives
413(3)
9.2.4 Polycarbazole Derivatives
416(1)
9.2.5 Polybenzodithiophene Derivatives
417(2)
9.2.6 Polycyclopentadithiophene Derivatives
419(2)
9.2.7 Metallic Conjugated Polymers
421(2)
9.3 Polymer Acceptor Materials
423(5)
9.4 Conclusions and Outlook
428(9)
References
429(8)
10 Dye-Sensitized Solar Cells (DSSCs)
437(30)
Lanchao Ma
Xiaowei Zhan
10.1 Introduction
437(5)
10.2 Small-Molecule Dyes in DSSCs
442(11)
10.2.1 Coumarin Dyes
442(2)
10.2.2 Triphenylamine Dyes
444(4)
10.2.3 Bisfluorenylaniline Dyes
448(2)
10.2.4 Other Dyes
450(3)
10.3 Polymer Dyes in DSSCs
453(1)
10.4 Dyes in p-Type DSSCs
454(3)
10.5 Summary and Outlook
457(10)
References
459(8)
11 Organic Thermoelectric Power Devices
467(20)
Martin Leijnse
Karsten Flensberg
Thomas Bjornholm
11.1 Introduction
467(1)
11.2 Basic Thermoelectric Principles
468(8)
11.2.1 The Thermoelectric Effect
468(4)
11.2.2 Thermoelectric Efficiency and Figure of Merit
472(2)
11.2.3 Optimizing the Figure of Merit
474(2)
11.3 Thermoelectric Materials and Devices
476(7)
11.3.1 Inorganic Nanostructured Materials
476(1)
11.3.2 Single-Molecule Devices
477(3)
11.3.3 Devices Based on Polymers
480(2)
11.3.4 Devices Based on Small Molecules
482(1)
11.3.5 Hybrid and Composite Materials
482(1)
11.4 Conclusions and Outlook
483(4)
References
484(3)
Glossary of the book 487(10)
Index 497
Wenping Hu received his PhD from ICCAS in 1999, then, he worked in Osaka University and Stuttgart University as a research fellow of Japan Society for the Promotion of Sciences and Alexander von Humboldt Foundation, respectively. In 2003, he returned to ICCAS as a full professor from Nippon Telephone and Telegraph. He is focusing on organic optoelectronics since 1996. In 2010, he received the Young Chemist Award of Chinese Chemical Society and Royal Chemical Society of UK, and in 2012 he got the Chemical Innovation Award of Chinese Chemical Society and Evonik in recognition of his renowned research in the area of organic optoelectronic materials and devices.